Skip to main content

Algebraic Structures and Observations: Quantales for a Noncommutative Logic - Theoretic Approach to Quantum Mechanics

  • Chapter
The Foundations of Quantum Mechanics — Historical Analysis and Open Questions

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 71))

  • 544 Accesses

Abstract

This paper is a series of intertwining observations about the connection between the logic-theoretic noncommutativity and a logical foundation of quantum mechanics. We will analyze noncommutativity, both from an algebraic and prooftheoretic point of view, w.r.t. the quantum mechanics notion that the order of observation making is central to their description. To this end, we will present the sequential conjunction ⊗ : AB) means “A at time t 1 and then B at time t 2”.

The thread running through our discourse is given by quantales, i.e. algebraic structures introduced by Mulvey as models for the logic of quantum mechanics, which offer an appropriate algebraic (and topological) tool for describing noncommutativity.

What meaning should be given to such results, considering that logic must be as much above suspicion as Caesar’s wife?

(R. Omnès, 1990)(1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrusci, V.M. (1991). “Phase semantics and sequent calculus for pure noncommutative classical linear propositional logic”, The Journal of Symbolic Logic ,56 (1403).

    Article  MathSciNet  MATH  Google Scholar 

  • Abrusci, V.M. (1993). Exchange connectives ,preprint, 1993.

    Google Scholar 

  • Barr, M. (1979). *-Autonomous Categories, Springer, LNM 752.

    Google Scholar 

  • Birkhoff, G. (1961). “Lattices in applied mathematics”, collected in R.P. Dilworth (ed.), Lattice theory ,American Mathematical Society, Rhode Island.

    Google Scholar 

  • Brown, C. and Gurr, D. (1993) “A representation theorem for quantales”, Journal of Pure and Applied Algebra ,85 (27).

    Article  MathSciNet  MATH  Google Scholar 

  • Butkovskiy, A.G. and Samoilenko, Yu.I. (1990), Control of Quantum Mechanical Processes and Systems ,Kluwer Academic Publisher, Dordrecht.

    Book  MATH  Google Scholar 

  • Castellan M. and Piazza, M. “ Quantale semantics for noncommutative classical linear logic with exchange connectives and exponentials”, Proceedings of the Workshop “Linear logic and Lambek calculus” ,Rome, June 28–30, 1993, forthcoming.

    Google Scholar 

  • Haag, R. and Kastler, D. (1964). “An Algebraic Approach to Quantum Field Theory”, Journal of Mathematical Physics ,5 (848).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Isham, C.J. (1994). “Quantum logic and the histories approach to quantum theory”, Journal of Mathematical Physics ,35 (2157).

    Google Scholar 

  • Jordan, P. (1949). “Über nichtkommutative Verbände”, Archiv der Mathematik ,2 (56).

    Google Scholar 

  • Jordan, P. (1959). “Quantenlogik und das kommutative Gesetz”, collected in Henkin, L, Suppes, P. and Tarski, A. (eds.), The Axiomatic Method ,North-Holland, Amsterdam.

    Google Scholar 

  • Manin, Yu.I. (1988). Quantum groups and noncommutative geometry ,Centre de Recherches Mathematiques, Universite de Montreal.

    Google Scholar 

  • Mulvey, C.J. (1986). “&”, Supplemento ai Rendiconti del Circolo Matematico di Palermo, 12 (99).

    Google Scholar 

  • Nishimura, H. (1980). “Sequential method in quantum logic”, The Journal of Symbolic Logic ,45 (339).

    Article  MathSciNet  MATH  Google Scholar 

  • Omnès, R. (1990). “From Hilbert Space to Common Sense: A Synthesis of Recent Progress in the Interpretation of Quantum Mechanics”, Annals of Physics ,201 (354).

    Article  MathSciNet  ADS  Google Scholar 

  • Piazza, M. (1994). How to construct a (non trivial) Girard quantale from a Boolean algebra ,manuscript, June.

    Google Scholar 

  • Rosenthal, K.I. (1990). Quantales and their application ,Longman Scientific & Technical, Essex.

    Google Scholar 

  • Srinivas, M.D. (1975). “Foundation of a quantum probability theory”, Journal of Mathematical Physics ,6 (1672).

    Article  MathSciNet  ADS  Google Scholar 

  • Stachov, E.W. (1980). “Logical Foundation of Quantum Mechanics”, International Journal of Theoretical Physics ,19 (251).

    Article  MathSciNet  ADS  Google Scholar 

  • Yetter, D.N. (1990). “Quantales and (noncommutative) linear logic”, The Journal of Symbolic Logic ,55 (41).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Piazza, M. (1995). Algebraic Structures and Observations: Quantales for a Noncommutative Logic - Theoretic Approach to Quantum Mechanics. In: Garola, C., Rossi, A. (eds) The Foundations of Quantum Mechanics — Historical Analysis and Open Questions. Fundamental Theories of Physics, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0029-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0029-8_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4017-4

  • Online ISBN: 978-94-011-0029-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics