Skip to main content

Cardiac Metabolism: Positron Emission Tomography Versus Single Photon Emission Computed Tomography

  • Chapter
  • 66 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 166))

Abstract

Many noninvasive methods for imaging cardiac metabolism have been developed in the past decades. Initially, these methods were mainly used for research purposes, but they are now increasingly used in clinical practice for assessment of viable cardiac tissue. The key issue is to detect potentially salvageable tissue in jeopardized areas, predominantly pertaining to infarct zones and areas supplied by critically stenosed arteries.1 The correct identification of hibernating and stunned myocardium in patients with severely depressed cardiac function can have vital therapeutic consequences for the patient. Changes in myocardial fatty acid and glucose metabolism during acute and prolonged ischemia can be traced by positron emitting or gamma emitting radiopharmaceuticals. Positron emission tomography (PET) that uses combinations of flow tracers and metabolic tracers offers unique opportunities for quantification and high-resolution static and rapid dynamic studies. Currently, assessment of glucose metabolism with fluorine-18-fluorodeoxyglucose (18FDG) is regarded as the gold standard for myocardial viability and for prediction of improvement of impaired contractile function after revascularization. However, preserved oxidative metabolism may be required for potential functional improvement and therefore, assessment of residual oxidative metabolism by carbon-11(1lC)-acetate PET may prove to be more accurate than 18FDG PET which reflects both anaerobic and oxidative metabolism. Moreover, because fatty acids are metabolized only aerobically, they are excellent candidates for clinical assessment of myocardial viability and prediction of functional improvement after revascularization. Apart from positron emission agents for studying cardiac metabolism, single photon agents have gained renewed interest. In this regard, radioiodinated free fatty acids have been shown to be valuable alternative tracers for studying cardiac metabolism and viability. Especially derivatives of radioiodinated free fatty acids which are not metabolized but accumulate in the myocyte are attractive for myocardial imaging. Examples are 123I-ß-methyl-p-iodophenyl pentadecanoic acid (123I-BMIPPA) and 15-(o-123I-phenyl)-pentadecanoic acid (123I-olPPA). These tracers can be detected by planar scintigraphy and single photon emission computed tomography (SPECT), which are more economical and more widely available techniques than PET. In addition, 511 keV collimators have been developed recently, making the detection of positron emitters by planar scintigraphy and SPECT feasible. The purpose of this chapter is to explore the properties of myocardial metabolism that offer opportunities for imaging and to discuss how different imaging modalities are capable to translate changes in metabolism into clinically useful information.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gropler RJ, Bergmann SR. Myocardial viability — what is the definition? J Nucl Med 1991;32:10–2.

    PubMed  CAS  Google Scholar 

  2. Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP. Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F]2-fluoro-2-deoxy-D-glucose. J Nucl Med 1978; 19:1154–1161.

    PubMed  CAS  Google Scholar 

  3. Ratib O, Phelps ME, Huang SC, Henze E, Selin CE, Schelbert HR. Positron tomography with deoxyglucose for estimating local myocardial glucose metabolism. J Nucl Med 1982;23:577–586.

    PubMed  CAS  Google Scholar 

  4. Phelps ME, Schelbert HR, Mazziotta JC. Positron computed tomography for studies of myocardial and cerebral function. Ann Intern Med 1983;98:339–359.

    PubMed  CAS  Google Scholar 

  5. Halama JR, Gratley J, DeGrado TR, Bernstein DR, Ng CK, Holden JE. Validation of 3-deoxy-3-fluoro-D-glucose as a glucose transport analogue in rat heart. Am J Physiol 1984;246:H777–787.

    Google Scholar 

  6. Gambhir SS, Schwaiger M, Huang SC et al. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med 1989;30:359–366.

    PubMed  CAS  Google Scholar 

  7. Schwaiger M, Schelbert HR, Ellison D et al. Sustained regional abnormalities in cardiac metabolism after transient ischemia in the chronic dog model. J Am Coll Cardiol 1985;6:336–347.

    Article  PubMed  CAS  Google Scholar 

  8. Choi Y, Hawkins RA, Huang SC et al. Parametric images of myocardial metabolic rate of glucose generated from dynamic cardiac PET and 2-[18F]fluoro-2-deoxy-d-glucose studies. J Nucl Med 1991;32:733–738.

    PubMed  CAS  Google Scholar 

  9. Camici P, Ferrannini E, Opie L. Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis 1989;32:217–238.

    Article  PubMed  CAS  Google Scholar 

  10. Gropler RJ, Siegel BA, Lee KJ et al. Nonuniformity in myocardial accumulation of fluorine-18-fluorodeoxyglucose in normal fasted humans. J Nucl Med 1990;31:1749–1756.

    PubMed  CAS  Google Scholar 

  11. Choi Y, Brunken RC, Hawkins RA et al. Factors affecting myocardial 2-[F-18]fluoro-2-deoxy-D-glucose uptake in positron emission tomography studies of normal humans. Eur J Nucl Med 1993;20:308–318.

    Article  PubMed  CAS  Google Scholar 

  12. vom Dahl J, Herman WH, Hicks RJ et al. Myocardial glucose uptake in patients with insulin-dependent diabetes mellitus assessed quantitatively by dynamic positron emission tomography. Circulation 1993;88:395–404.

    Article  Google Scholar 

  13. Knuuti MJ, Nuutila P, Ruotsilaanen U et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1991;32:565–578.

    Google Scholar 

  14. Schwaiger M, Brunken R, Grover-McKay M et al. Regional myocardial metabolism in patients with acute myocardial infarction assessed by positron emission tomography. J Am Coll Cardiol 1986;8:800–808.

    Article  PubMed  CAS  Google Scholar 

  15. Niemeyer MG, Kuijper AF, Gerhards LJ, D’Haene EG, van der Wall EE. Nitrogen-13 ammonia perfusion imaging: relation to metabolic imaging. Am Heart J 1993; 125:848–854.

    Article  PubMed  CAS  Google Scholar 

  16. Marshall RC, Tillisch JH, Phelps ME et al. Identification and differentiation of resting myocardial ischemia and infarction in man with positron computed tomography, 18F-labeled fluorodeoxyglucose and N-13 ammonia. Circulation 1983;67:766–778.

    Article  PubMed  CAS  Google Scholar 

  17. Tillisch J, Brunken R, Marshall R et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884–888.

    Article  PubMed  CAS  Google Scholar 

  18. Schelbert HR, Schwaiger M. Positron emission tomography in human myocardial ischemia. Herz 1987; 12:22–40.

    PubMed  CAS  Google Scholar 

  19. Tamaki N, Yonekura Y, Yamashita K et al. Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 1989;64:860–865.

    Article  PubMed  CAS  Google Scholar 

  20. Al-Aouar ZR, Eitzman D, Hepner A et al. PET assessment of myocardial tissue viability: University of Michigan experience. J Nucl Med 1990;31:801 (Abstract).

    Google Scholar 

  21. Tamaki N, Yonekura Y, Yamashita K et al. Prediction of reversible ischemia after coronary artery bypass grafting by positron emission tomography. J Cardiol 1991;21:193–201.

    PubMed  CAS  Google Scholar 

  22. Marwick TH, Maclntyre WJ, Lafont A, Nemec JJ, Salcedo EE. Metabolic responses of hibernating and infarcted myocardium to revascularization. A follow-up study of regional perfusion, function, and metabolism. Circulation 1992;85:1347–1353.

    Article  PubMed  CAS  Google Scholar 

  23. Lucignani G, Paolini G, Landoni C et al. Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med 1992;19:874–881.

    Article  PubMed  CAS  Google Scholar 

  24. Tamaki N. Current status of viability assessment with positron emission tomography. J Nucl Cardiol 1994;1:S40–47.

    Article  PubMed  CAS  Google Scholar 

  25. Gropler RJ, Geltman EM, Sampathkumaran K et al. Comparison of carbon-11-acetate with fluorine-18-deoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol 1993;22:1587–1597.

    Article  PubMed  CAS  Google Scholar 

  26. Vom Dahl J, Eitzman DT, Al-Aouar ZR et al. Relation to regional function, perfusion, and metabolism in patients with advanced coronary artery disease undergoing surgical revascularization. Circulation 1994;90:2356–2366.

    Article  Google Scholar 

  27. Eitzman D, al-Aouar Z, Kanter HL et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992;20:559–565.

    Article  PubMed  CAS  Google Scholar 

  28. Tamaki N, Kawamoto M, Takahashi N et al. Prognostic value of an increase in fluorine-18 deoxyglycose uptake in patients with myocardial infarction: comparison with stress thallium imaging. J Am Coll Cardiol 1993;22:1621–1627.

    Article  PubMed  CAS  Google Scholar 

  29. Yoshida K, Gould KL. Quantitative relation of myocardial infarct size and myocardial viability by positron emission tomography to left ventricular ejection fraction and 3-year mortality with and without revascularization. J Am Coll Cardiol 1993;22:984–997.

    Article  PubMed  CAS  Google Scholar 

  30. DiCarli MF, Davidson M, Little R et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 1994;73:527–533.

    Article  CAS  Google Scholar 

  31. Lee KS, Marwick TH, Cook SA et al. Prognosis of patients with left ventricular dysfunction, with and without viable myocardium after myocardial infarction. Relative efficacy of medical therapy and revascularization. Circulation 1994;90:2687–2694.

    Article  PubMed  CAS  Google Scholar 

  32. Zaret BL, Wackers FJ. Nuclear cardiology (first of two parts). N Engl J Med 1993;329:775–783.

    Article  PubMed  CAS  Google Scholar 

  33. Takahashi N, Tamaki N, Kawamoto M et al. Glucose metabolism in relation to perfusion in patients with ischaemic heart disease. Eur J Nucl Med 1994;21:292–296.

    Article  PubMed  CAS  Google Scholar 

  34. Sebree L, Bianco JA, Subramanian R et al. Discordance between accumulation of C-14 deoxyglucose and TI-201 in reperfused myocardium. J Mol Cell Cardiol 1991;23:603–616.

    Article  PubMed  CAS  Google Scholar 

  35. Gropler RJ, Bergmann SR. Flow and metabolic determinants of myocardial viability assessed by positron-emission tomography. Coronary Artery Dis 1993;4:495–504.

    Article  CAS  Google Scholar 

  36. Phelps ME, Mazziotta JC, Schelbert HR, eds. Positron emission tomography and autoradiography: principles and applications for the brain and heart. New York: Raven Press, 1986:690.

    Google Scholar 

  37. van Ungen A, Huijgens PC, Visser FC et al. Performance characteristics of a 511-keV collimator for imaging positron emitters with a standard gamma-camera. Eur J Nucl Med 1992;19:315–321.

    Google Scholar 

  38. Williams KA, Taillon LA, Stark VJ. Quantitative planar imaging of glucose metabolic activity in myocardial segments with exercise thallium-201 perfusion defects in patients with myocardial infarction: comparison with late (24-hour) redistribution thallium imaging for detection of reversible ischemia. Am Heart J 1992; 124:294–304.

    Article  PubMed  CAS  Google Scholar 

  39. Bax JJ, Visser FC, van Ungen A et al. Detection of viable myocardium by FDG SPECT during hyperinsulinemic glucose clamping. J Nucl Med 1993;34:147P (Abstract).

    Google Scholar 

  40. Bax JJ, Visser FC, van Ungen A et al. Feasibility of assessing regional myocardial uptake of 18F-fluorodeoxyglucose using single photon emision tomography. Eur Heart J 1993;14:1675–1682.

    Article  PubMed  CAS  Google Scholar 

  41. Bax JJ, Visser FC, van Ungen A et al. Relation between myocardial uptake of thallium-201 chloride and fluorine-18 fluorodeoxyglucose imaged with single-photon emission tomography in normal individuals. Eur J Nucl Med 1995;22:56–60.

    Article  PubMed  CAS  Google Scholar 

  42. Walsh MN. Myocardial metabolic imaging with carbon-11-acetate. In: van der Wall EE, Sochor H, Righetti A, Niemeyer MN, ed. What’s new in cardiac imaging? SPECT, PET, and MRI. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1992:277–286.

    Chapter  Google Scholar 

  43. Brown MA, Marshall DR, Sobel BE, Bergmann SR. Deliniation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation 1987;76:687–696.

    Article  PubMed  CAS  Google Scholar 

  44. Armbrecht JJ, Buxton DB, Brunken RC, Phelps ME, Schelbert HR. Regional myocardial oxygen consumption determined noninvasively in humans with [1-11C]acetate and dynamic positron tomography. Circulation 1989;80:863–872.

    Article  PubMed  CAS  Google Scholar 

  45. Brown MA, Myears DW, Bergmann SR. Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization. J Nucl Med 1989;30:187–193.

    PubMed  CAS  Google Scholar 

  46. Buxton DB, Nienaber CA, Luxen A et al. Noninvasive quantitation of regional myocardial oxygen consumption in vivo with [1-11C]acetate and dynamic positron emission tomography. Circulation 1989;79:134–142.

    Article  PubMed  CAS  Google Scholar 

  47. Weinheimer CJ, Brown MA, Nohara R, Perez JE, Bergmann SR. Functional recovery after reperfusion is predicated on recovery of myocardial oxidative metabolism. Am Heart J 1993;125:939–949.

    Article  PubMed  CAS  Google Scholar 

  48. Heyndrickx GR, Wijns W, Vogelaers D et al. Recovery of regional contractile function and oxidative metabolism in stunned myocardium induced by 1-hour circumflex coronary artery stenosis in chronically instrumented dogs. Circ Res 1993;72:901–913.

    Article  PubMed  CAS  Google Scholar 

  49. Gropler RJ, Geltman EM, Sampathkumaran K et al. Functional recovery after coronary revascularization for chronic coronary artery disease is dependent on maintenance of oxidative metabolism. J Am Coll Cardiol 1992;20:569–577.

    Article  PubMed  CAS  Google Scholar 

  50. Walsh MN, Geltman EM, Brown MA et al. Noninvasive estimation of regional myocardial oxygen consumption by positron emission tomography with carbon-11 acetate in patients with myocardial infarction. J Nucl Med 1989;30:1798–1808.

    PubMed  CAS  Google Scholar 

  51. Henes CG, Bergmann SR, Perez JE, Sobel BE, Geltman EM. The time course of restoration of nutritive perfusion, myocardial oxygen consumption, and regional function after coronary thrombolysis. Coronary Artery Dis 1990;1:687–696.

    Article  Google Scholar 

  52. Poe ND, Robinson GD Jr, Graham LS, MacDonald NS. Experimental basis for myocardial imaging with l-123-labeled hexadecanoic acid. J Nucl Med 1976; 17:1077–1082.

    PubMed  CAS  Google Scholar 

  53. Machulla H-J, Stöcklin G, Kupfernagel C et al. Comparative evaluation of fatty acids labeled with C-11, Cl-34m, Br-77 and I-123 for metabolic studies of the myocardium: concise communication. J Nucl Med 1978; 19:298–302.

    PubMed  CAS  Google Scholar 

  54. Sobel BE, Weiss E, Welch M et al. Detection of remote myocardial infarction in patients with positron emission transaxial tomography and intravenous C-11 palmitate. Circulation 1977;55:853–857.

    Article  PubMed  CAS  Google Scholar 

  55. Sobel BE. Positron tomography and myocardial metabolism: an overview. Circulation 1985;72:IV22–30.

    PubMed  CAS  Google Scholar 

  56. Schelbert HR, Henze E, Schön HR et al. C-11 palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron emission tomography: IV: in vivo demonstration of impaired fatty acid oxidation in acute myocardial ischemia. Am Heart J 1983; 106:736–750.

    Article  PubMed  CAS  Google Scholar 

  57. Liedtke AJ. Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis 1981; 23:321–336.

    Article  PubMed  CAS  Google Scholar 

  58. Lerch R. Assessment of myocardial fatty acid metabolism with carbon-11 palmitate. In: van der Wall EE, Sochor H, Righetti A, Niemeyer MG, eds. What’s new in cardiac imaging? SPECT, PET, and MRI. Dordrecht The Netherlands: Kluwer Academic Publishers, 1992:249–461.

    Chapter  Google Scholar 

  59. Lerch RA, Ambos HD, Bergmann SR, Welch MJ, Ter-Pogossian MM, Sobel BE. Localization of viable, ischemic myocardium by positron-emission tomography with 11C-palmitate. Circulation 1981;64:689–699.

    Article  PubMed  CAS  Google Scholar 

  60. Schön HR, Schelbert HR, Robinson G et al. C-11 palmitic acid for the noninvasive evaluation of regional myocardial fatty acid metabolism with positron emission tomography: I: kinetics of C-11 palmitic acid in normal myocardium. Am Heart J 1981;103:532–547.

    Article  Google Scholar 

  61. Rosamond TL, Abendschein DR, Sobel BE, Bergmann SR, Fox KA. Metabolic fate of radiolabeled palmitate in ischemie canine myocardium: implications for positron emission tomography. J Nucl Med 1987;28:1322–1329.

    PubMed  CAS  Google Scholar 

  62. Grover-McKay M, Schelbert HR, Schwaiger M et al. Identification of impaired metabolic reserve by atrial pacing in patients with significant coronary artery stenosis. Circulation 1986;74:281–292.

    Article  PubMed  CAS  Google Scholar 

  63. Schelbert HR, Henze E, Sochor H et al. Effects of substrate availability on myocardial C-11 palmitate kinetics by positron emission tomography in normal subjects and patients with ventricular dysfunction. Am Heart J 1986;111:1055–1064.

    Article  PubMed  CAS  Google Scholar 

  64. Fox KAA, Abendschein D, Amos HD, Sobel BE, Bergmann SE. Efflux of metabolized and nonmetabolized fatty acid from canine myocardium. Implications for quantifying myocardial metabolism tomographically. Circ Res 1985;57:232–243.

    Article  PubMed  CAS  Google Scholar 

  65. Evans JR, Phil D, Gunton RW, Baker RG, Spears JC, Beanlands DS. Use of radioiodinated fatty acid for photoscans of the heart. Circ Res 1965; 16:1–10.

    Article  PubMed  CAS  Google Scholar 

  66. Poe ND, Robinson GD Jr, MacDonald NS. Myocardial extraction of labeled long-chain fatty acid analogs. Proc Soc Exp Biol Med 1975;148:215–218.

    PubMed  CAS  Google Scholar 

  67. Westera G, van der Wall EE, Heidendal GAK, van den Bos GC. A comparison between terminally radioiodinated hexadecanoic acid (I-HA) and TI-201-thallium chloride in the dog heart. Implications for the use of I-HA for myocardial imaging. Eur J Nucl Med 1980;5:339–343.

    Article  PubMed  CAS  Google Scholar 

  68. van der Wall EE, den Hollander W, Heidendal GA, Westera G, Majid PA, Roos JP. Dynamic myocardial scintigraphy with 1231-labeled free fatty acids in patients with myocardial infarction. Eur J Nucl Med 1981;6:383–389.

    PubMed  Google Scholar 

  69. van der Wall EE, Heidendal GA, den Hollander W, Westera G, Roos JP. Myocardial scintigraphy with 1231-labelled heptadecanoic acid in patients with unstable angina pectoris. Postgrad Med J 1983;59:38–40.

    Article  PubMed  Google Scholar 

  70. van der Wall EE, Heidendal GA, den Hollander W, Westera G, Roos JP. I-123 labeled hexadecenoic acid in comparison with Thallium-201 for myocardial imaging in coronary heart disease. A preliminary study. Eur J Nucl Med 1980;5:401–405.

    Article  PubMed  Google Scholar 

  71. van der Wall EE, Westera G, Heidendal GA, den Hollander W. A comparison between terminally radioiodinated hexadecenoic acid (1251-HA) and heptadecanoic acid (1311-H0A) in the dog heart. Eur J Nucl Med 1981;6:581–584.

    PubMed  Google Scholar 

  72. Visser FC, van Eenige MJ, Westera G et al. Metabolic fate of radioiodinated heptadecanoic acid in the normal canine heart. Circulation 1985;72:565–571.

    Article  PubMed  CAS  Google Scholar 

  73. Van Eenige MJ, Visser FC, Duwel CMB, Karreman AJP, Van Lingen A, Roos JP. Comparison of 17-iodine-131 heptadecanoic acid kinetics from externally measured time-activity curves and from serial myocardial biopsies in an open-chest canine model. J Nucl Med 1988;29:1934–1942.

    PubMed  Google Scholar 

  74. Chappuis F, Meier B, Belenger et al. Early assessment of tissue viability with radioiodinated heptadecanoic acid in reperfused canine myocardium: comparison with thallium-201. Am Heart J 1990; 119:833–8341.

    Article  PubMed  CAS  Google Scholar 

  75. Machulla HJ, Marsmann M, Dutschka K. Biochemical concept and synthesis of a radioiodinated phenylfatty acid for in vivo metabolic studies of the myocardium. Eur J Nucl Med 1980;5:171–173.

    Article  PubMed  CAS  Google Scholar 

  76. Dudczak R, Schmolinger R, Kletter K, Frischauf H, Angelberger P. Clinical evaluation of 1231-labeled-p-phenylpentadecanoic acid (p-IPPA) for myocardial scintigraphy. J Nucl Med Allied Sci 1983;27:267–279.

    PubMed  CAS  Google Scholar 

  77. Reske SN, Knapp FF, Winkler C. Experimental basis of metabolic imaging of the myocardium with radioiodinated aromatic free fatty acids. Am J Physiol Imaging 1986;1:214–229.

    PubMed  CAS  Google Scholar 

  78. Reske SN, Sauer W, Machulla H-J, Winkler. 15(p-[123I]-iodophenyl)pentadecanoic acid as a tracer of lipid metabolismxomparison with [1-14C]palmitic acid in murine tissues. J Nucl Med 1984;25:1335–1342.

    PubMed  CAS  Google Scholar 

  79. Beckurts TE, Shreeve WW, Schieren R, Feinendegen LE. Kinetics of different 123l-and 14C-labelled fatty acids in normal and diabetic rat myocardium in vivo. Nucl Med Comm 1985;6:415–424.

    Article  CAS  Google Scholar 

  80. Antar MA, Spohr G, Herzog HH et al. 15-(ortho-123l-phenyl)-pentadecanoic acid, a new myocardial imaging agent for clinical use. Nucl Med Commun 1986;7:683–696.

    PubMed  CAS  Google Scholar 

  81. Kaiser KP, Geuting B, Grossmann K et al. Tracer kinetics of 15-(ortho-123/131 I-phenyl)-pentadecanoic acid (oPPA) and l5-(para-123/1311-pheny)-pentadecanoic acid (pPPA) in animals and man. J Nucl Med 1990;31:1608–1616.

    PubMed  CAS  Google Scholar 

  82. Reske SN. Experimental and clinical experience with iodine 123-labeled iodophenylpentadecanoic acid in cardiology. J Nucl Cardiol 1994;1:S58–S64.

    Article  PubMed  CAS  Google Scholar 

  83. Ambrose KR, Owen BA, Goodman MM, Knapp FF Jr. Evaluation of the metabolism in rat hearts of two new radioiodinated 3-methyl-branched fatty acid myocardial imaging agents. Eur J Nucl Med 1987;12:486–491.

    Article  PubMed  CAS  Google Scholar 

  84. Knapp FF Jr, Goodman MM, Ambrose KR et al. The development of radioiodinated 3-methyl-branched fatty acids for evaluation of myocardial disease by single photon techniques. In: van der Wall EE, ed. Noninvasive imaging of cardiac metabolism. Dordrecht: Martinus Nijhoff, 1987:159–201.

    Chapter  Google Scholar 

  85. Yamamichi Y, Shirakami Y, Morishita K, Kurami M, Kusuoka H, Nishimura T. Intramyocardial metabolism of β-methyl-p-iodophenyl pentadecanoic acid (BMIPP). J Nucl Med 1994;35:97P (Abstract).

    Google Scholar 

  86. Suzuki N, Kurami M, Kusuoka H, Nishimura T. Myocardial intracellular kinetics of branched-chained free fatty acid, I-123 BMIPP. J Nucl Med 1994;35:97P (Abstract).

    Google Scholar 

  87. Knapp FF Jr., Goodman MM, Callahan AP, Kirsch G. Radioiodinated 15-(p-iodophenyl)-3,3-dimethylpentadecanoic acid: a useful new agent to evaluate myocardial fatty acid uptake. J Nucl Med 1986;27:521–531.

    PubMed  CAS  Google Scholar 

  88. Sloof GW, Visser FC, Eenige van MJ et al. Comparison of uptake, oxidation and lipid distribution of 17-iodoheptadecanoic acid, 15-(p-iodophenyl)pentadecanoic acid and 15-(p-iodopheny3-,3-dimethylpentadecanoic acid in normal canine myocardium. J Nucl Med 1993;34:649–657.

    PubMed  CAS  Google Scholar 

  89. Miller DD, Gill JB, Livni E et al. Fatty acid analogue accumulation:a marker of myocyte viability in ischemic-perfused myocardium. Circ Res 1988, 63:681–692.

    Article  PubMed  CAS  Google Scholar 

  90. Nishimura T, Sago M, Kihara K et al. Fatty acid myocardial imaging using 123l-ß-methyl-iodophenyl pentadecanoic acid (BMIPP):comparison of myocardial perfusion and fatty acid utilization in canine myocardial infarction (occlusion and reperfusion model). Eur J Nucl Med 1989;15:314–315.

    Article  Google Scholar 

  91. Reske SN. 1231-phenylpentadecanoic acid as a tracer of cardiac free fatty acid metabolism. Experimental and clinical results. Eur Heart J 1985;6:39–47.

    Article  PubMed  CAS  Google Scholar 

  92. Railton R, Rodger JC, Small DR, Harrower AD. Myocardial scintigraphy with I-123 heptadecanoic acid as a test for coronary heart disease. Eur J Nucl Med 1987; 13:63–66.

    Article  PubMed  CAS  Google Scholar 

  93. Dudczak R, Schmoliner R, Angelberger P, Knapp FF, Goodman MM. Structurally modified fatty acids: clinical potential as tracers of metabolism. Eur J Nucl Med 1986;12:S45–48.

    Article  PubMed  Google Scholar 

  94. van der Wall EE, Heidendal GA, den Hollander W, Westera G, Roos JP. Metabolic myocardial imaging with 1231-labeled heptadecanoic acid in patients with angina pectoris. Eur J Nucl Med 1981;6:391–396.

    PubMed  Google Scholar 

  95. Kennedy PL, Corbett JR, Kulkarni PV et al. lodine-123-phenylpentadecanoic acid myocardial scintigraphy:usefulness in the identification of myocardial ischemia. Circulation 1986;74:1007–1015.

    Article  PubMed  CAS  Google Scholar 

  96. Tamaki N, Kawamoto M. The use of iodinated free fatty acids for assessing fatty acid metabolism. J Nucl Cardiol 1994;1:S72–S78.

    Article  PubMed  CAS  Google Scholar 

  97. Nishimura T, Uehara T, Shimonagata T, Nagata S, Haze K. Clinical results with ß-methyl-p-(123I) iodophenylpentadecanoic acid, single-photon emission computed. tomography in cardiac disease. J Nucl Cardiol 1994;1:S65–S71.

    Article  PubMed  CAS  Google Scholar 

  98. Corbett J. Clinical experience with iodine-123-iodophenylpentadecanoic acid. J Nucl Med 1994;35:32S–37S.

    PubMed  CAS  Google Scholar 

  99. Hansen CL, Corbett JR, Pippin JJ et al. lodine-123-phenylpentadecanoic acid and single photon emission computed tomography in identifying left ventricular regional metabolic abnormalities in patients with coronary artery disease; comparison with thallium-201 tomography. J Am Coll Cardiol 1988; 12:78–87.

    Article  PubMed  CAS  Google Scholar 

  100. Chouraqui P, Maddahi J, Henkin R. Comparison of myocardial imaging with iodine-123-iodophenyl-9-methyl pentadecanoic acid and thalllium-201-chloride for asessment of patients with exercise-induced ischemia. J Nucl med 1991;32:447–452.

    PubMed  CAS  Google Scholar 

  101. Pippin J, Corbett J, Jansen D et al. Comparison of I-123-phenylpentadecanoic acid and thallium-201 tomographic imaging for the detection of coronary artery stenoses. Circulation 1987;76:IV–508 (Abstract).

    Google Scholar 

  102. Tamaki N, Kawamoto M, Yonekura Y et al. Regional metabolic abnormality in relation to perfusion and wall motion in patients with myocardial infarction: assessment with emission tomography using an iodinated branches fatty acid analog. J Nucl Med 1992;33:659–667.

    PubMed  CAS  Google Scholar 

  103. Matsunari I, Saga T, Taki J et al. Kinetics of iodine-123-BMIPP in patients with prior myocardial infarction: assessment with dynamic rest and stress images compared with thallium-201 SPECT. J Nucl Med 1994;35:1279–1285.

    PubMed  CAS  Google Scholar 

  104. Reske SN. Viability as seen with radiolabelled fatty acids — a new approach to a challenging problem. Eur J Nucl Med 1994; 21:279–282.

    Article  PubMed  CAS  Google Scholar 

  105. Murray G, Schad N, Ladd W, et al. Metabolic cardiac imaging in severe coronary disease: assessment of viability with iodine-123-iodophenylpentadecanoic acid and multicrystal gamma camera, and correlation with biopsy. J Nucl Med 1992;33:1269–77.

    PubMed  CAS  Google Scholar 

  106. Murray GL, Schad NC, Magill HL, Van der Zwaag R. Myocardial viability assessment with dynamic low-dose iodine-123-iodophenylpentadecanoic acid metabolic imaging: comparison with myocardial biopsy and reinjection SPECT thallium after myocardial infarction. J Nucl Med 1994;35:43S–48S.

    PubMed  CAS  Google Scholar 

  107. Kuikka JT, Mussalo H, Hietakorpi S, Vanninen E, Lansimies E. Evaluation of myocardial viability with technetium-99m hexakis-2-methoxyisobutyl isonitrile and iodine-123 phenylpentadecanoic acid and single photon emission tomography. Eur J Nucl Med 1992;19:882–9.

    Article  PubMed  CAS  Google Scholar 

  108. Henrich MM, Vester E, von-der-Lohe E et al. The comparison of 2-18F-2-deoxyglucose and lo-lortho-SI-phenyO-pentadecanoic acid uptake in persisting defects on thallium-201 tomography in myocardial infarction. J Nucl Med 1991; 32:1353–7.

    PubMed  CAS  Google Scholar 

  109. Visser FC, Westera G, Van Eenige MJ, van der Wall EE, Heidendal GAK, Roos JP. Free fatty acid scintigraphy in patients with successful thrombolysis after myocardial infarction. Clin Nucl Med 1985; 10:35–9.

    Article  PubMed  CAS  Google Scholar 

  110. Franken PR, De Geeter F, Dendale P, Block P, Bossuyt A. Regional distribution of 1231-(ortho-iodophenyD-pentadecanoic acid and 99Tcm-MIBI in relation to wall motion after thrombolysis for acute myocardial infarction. Nucl Med Commun 1993; 14:310–317.

    Article  PubMed  CAS  Google Scholar 

  111. De Geeter F, Franken PR, Knapp FF, Bossuyt A. Relationship between blood flow and fatty acid metabolism in subacute myocardial infarction: a study by means of 99mTc-Sestamibi and 123l-β-methyl-iodo-phenyl pentadecanoic acid. Eur J Nucl Med 1994;21:283–291.

    Article  PubMed  Google Scholar 

  112. Dilsizian V, Rocco TP, Freedman NM, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990;323:141–146.

    Article  PubMed  CAS  Google Scholar 

  113. Dilsizian V, Bonow RO. Current diagnostic techniques of assessing myocardial viability in hibernating and stunned myocardium. Circulation 1993;87:1–20.

    Article  PubMed  CAS  Google Scholar 

  114. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation 1991;83:26–37.

    Article  PubMed  CAS  Google Scholar 

  115. van Eck-Smit BLF, van der Wall EE, Kuijper AFM, Zwinderman AH, Pauwels EKJ. Immediate TI-201 reinjection following stress imaging: a novel time-saving aproach for detection of myocardial viability. J Nucl Med 1993;34:737–743.

    PubMed  Google Scholar 

  116. Kuijper AFM, Niemeyer MG, D’Haene EGM, van der Wall EE, Pauwels EKJ. Stress-reinjection Thallium-201 scintigraphy: prediction of effect of coronary artery bypass grafting on regional myocardial perfusion. J Am Coll Cardiol 1993;21:389A (Abstract).

    Google Scholar 

  117. Ohtani H, Tamaki N, Yonekura Y et al. Value of thallium-201 reinjection after delayed SPECT imaging for predicting reversible ischemia after coronary artery bypass grafting. Am J Cardiol 1990;66:394–399.

    Article  PubMed  CAS  Google Scholar 

  118. Tamaki N, Ohtani H, Yamashita K et al. Metabolic activity in the areas of new fill-in after thallium-201 reinjection: comparison with positron emission tomography using fluorine-18-deoxyglucose. J Nucl Med 1991;32:673–678.

    PubMed  CAS  Google Scholar 

  119. Kuijper AFM, Vliegen HW, van der Wall EE et al. The clinical impact of thallium-201 reinjection for detection of myocardial viability. Eur J Nucl Med 1992; 19:783–789.

    Article  PubMed  CAS  Google Scholar 

  120. Beanlands RS, Dawood F, Wen WH et al. Are the kinetics of technetium-99m methoxyisobutyl isonitrile affected by cell metabolism and viability? Circulation 1990;82:1802–1814.

    Article  PubMed  CAS  Google Scholar 

  121. Carvalho PA, Chiu ML, Kronarige JF et al. Subcellular distribution and analysis of Tc99m-MIBI in isolated perfused rat hearts. J Nucl Med 1992;33:1516–1521.

    PubMed  CAS  Google Scholar 

  122. Crane P, Laliberte R, Heminway S, Thoolen M, Orlandi C. Effect of mitochondrial viability and metabolism on technetium-99m-sestamibi myocardial retention. Eur J Nucl Med 1993;20:20–25.

    Article  PubMed  CAS  Google Scholar 

  123. Altehoefer C, Kaiser HJ, Dörr R, et al. Fluorine-18 deoxyglucose PET for asessment of viable myocardium in perfusion defects in 99mTc-MIBI SPET: a comparative study in patients with coronary artery disease. Eur J Nucl Med 1992; 19:334–342.

    Article  PubMed  CAS  Google Scholar 

  124. Sawada SG, Allman KC, Muzik O et al. Positron emission tomography detects evidence of viability in rest technetium-99m sestamibi defects. J Am Coll Cardiol 1994;23:92–98.

    Article  PubMed  CAS  Google Scholar 

  125. Cuoculo A, Pace L, Ricciardelli B, Chiaririello M, Trimarco B, Salvatore M. Identification of viable myocardium in patients with chronic coronary artery disease. Comparison of thallium-201 scintigraphy with reinjection and technetium 99m methoxyisobutyl isonitrile. J Nucl Med 1992;33:505–511.

    Google Scholar 

  126. Marzullo P, Sambuceti G. 99mTc-sestamibi: its clinical role as a viability agent. J Nucl Biol Med 1992;36:259–266.

    PubMed  CAS  Google Scholar 

  127. Piwnica-Worms D, Kronauge JF, Chiu ML. Uptake and retention of hexakis (2-methoxyisobutyl isonitrile) technetium(I) in cultured chick myocardial cells. Mitochondrial and plasma membrane potential dependence. Circulation 1990;82:1826–1888.

    Article  PubMed  CAS  Google Scholar 

  128. Schoeder H, Friedrich M, Topp H. Myocardial viability: What do we need? Eur J Nucl Med 1993;20:792–803.

    Article  PubMed  CAS  Google Scholar 

  129. Valkema R, van Eck-Smit BLF, van der Wall EE. Cardiac metabolism: a technical spectrum of modalities including positron emission tomography, single-photon emission computed tomography, and magnetic resonance spectroscopy. J Nucl Cardiol 1994; 1:546–560.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van der Wall, E.E. (1995). Cardiac Metabolism: Positron Emission Tomography Versus Single Photon Emission Computed Tomography. In: van der Wall, E.E., Blanksma, P.K., Niemeyer, M.G., Paans, A.M.J. (eds) Cardiac Positron Emission Tomography. Developments in Cardiovascular Medicine, vol 166. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0023-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0023-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4014-3

  • Online ISBN: 978-94-011-0023-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics