Skip to main content

Experimental and Clinical Cardiac Beta-receptor Studies

  • Chapter
Cardiac Positron Emission Tomography

Abstract

In the last decades increasing information has become available on changes in cardiac receptors during pathophysiological circumstances. With the advent of positron emission tomography (PET) imaging it is now theoretically possible to measure receptor density noninvasively in vivo. In the field of sympathetic innervation and postsynaptic cardiac ß-adrenoceptors in the heart, the first data using the PET technique have been published. Beta-adrenoceptors have been quantified by in vitro binding assays and changes in ß-adrenoceptor density have been associated with congestive heart failure,1, 2 myocardial ischemia,3, 4 cardiomyopathy,5, 6 valvular diseases,7 hypertension,8 diabetes,9, 10 hyperthyroidism11 and chronic drug administration.12, 13 Cardiac ß1adrenoceptors exert positive inotropic, lusitropic, and chronotropic effects, whereas cardiac ß2-adrenoceptors mainly have positive chronotropic and vasodilatory effects. Alteration in number of these receptors will affect cardiac function, especially since the human heart has a small receptor reserve for ß-agonists.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bristow MR, Ginsburg R, Umans V et al. Beta1-and beta2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res 1986;59:297–309.

    Article  PubMed  CAS  Google Scholar 

  2. Brodde O-E, Zerkowski H-R, Borst HG, Maier W, Michel MC. Drug-and disease-induced changes of human cardiac ß1-and ß2-adrenoceptors. Eur Heart J 1989;10(Suppl B):38–44.

    Article  PubMed  Google Scholar 

  3. Maisel AS, Motulsky HJ, Insel PA. Extemalization of β-adrenergic receptors promoted by myocardial ischemia. Science 1985;230:183–186.

    Article  PubMed  CAS  Google Scholar 

  4. Mukherjee A, Wong TM, Buja LM, Lefkowitz RJ, Willerson JT. Beta-adrenergic and muscarinic cholinergic receptors in canine myocardium. Effects of ischemia. J Clin Invest 1979;64:1423–1428.

    Article  PubMed  CAS  Google Scholar 

  5. Heilbrunn SM, Shah P, Bristow MR, Valantine HA, Ginsburg R, Fowler MB. Increased ß-receptor density and improved hemodynamic response to catecholamine stimulation during longterm metoprolol therapy in heart failure from dilated cardiomyopathy. Circulation 1989;79:483–490.

    Article  PubMed  CAS  Google Scholar 

  6. Bristow MR, Anderson FL, Port JD et al. Differences in beta-adrenergic neuroeffector mechanisms in ischemic versus idiopathic dilated cardiomyopathy. Circulation 1991;84:1024–1031.

    Article  PubMed  CAS  Google Scholar 

  7. Brodde OE, Zerkowski HR, Doetsch N, Motomura S, Khamssi M, Michel MC. Myocardial ß-adrenoceptor changes in heart failure: concomitant reduction in ß1 and ß2-adrenoceptor function related to the degree of heart failure in patients with mitral valve disease. J Am Coll Cardiol 1989;14:323–331.

    Article  PubMed  CAS  Google Scholar 

  8. Yamada S, Ishima T, Tornita T, Hayashi T, Okada T, Hayashi E. Alterations in cardiac α-and ß-adrenoceptors during the development of spontaneous hypertension. J Pharmacol Exp Ther 1984;228:454–459.

    PubMed  CAS  Google Scholar 

  9. Heyliger CE, Pierce GN, Singal PK, Beamish RE, Dahalla NS. Cardiac α-and ß-adrenergic receptor alterations in diabetic cardiomyopathy. Basic Res Cardiol 1982;77:610–618.

    Article  PubMed  CAS  Google Scholar 

  10. Williams RS, Schaible TF, Scheuer J, Kenny R. Effects of experimental diabetes on adrenergic and cholinergic receptors of rat myocardium. Diabetes 1983;32:881–886.

    Article  PubMed  CAS  Google Scholar 

  11. Lefkowitz RJ, Caron MG, Stiles GL. Mechanism of membrane-receptor regulation. Biochemical, Physiological, and clinical insights derived from studies of the adrenergic receptors. N Engl J Med 1984;24:1570–1579.

    Google Scholar 

  12. Maisel AS, Phillips C, Michel MC, Ziegler MG, Carter SM. Regulation of cardiac ß-adrenergic receptors by captopril. Implications for congestive heart failure. Circulation 1989;80:669–675.

    Article  PubMed  CAS  Google Scholar 

  13. Maisel AS, Motulsky HJ, Insel PA. Propranolol treatment externalizes ß-adrenergic receptors in guinea-pig myocardium and prevents further extemalization by ischemia. Circ Res 1986;60:108–112.

    Article  Google Scholar 

  14. Vleeming W, Van der Wouw PA, Te Biesebeek JD, Van Rooij HH, Werner J, Porsius AJ. Density of ß-adrenoceptors in rat heart and lymphocytes 48 hours and 7 days after acute myocardial infarction. Cardiovasc Res 1989;23:859–866.

    Article  PubMed  CAS  Google Scholar 

  15. Rhee HM, Tyler L. Myocardial ischemia injury and ß-adrenergic receptors in perfused working rabbit hearts. Adv Exp Med Biol 1985; 191:281–288.

    PubMed  CAS  Google Scholar 

  16. Limas CJ. Increased number of ß-adrenergic receptors in the hypertrophied myocardium. Biochem Biophys Acta 1979;588:174–178.

    Article  PubMed  CAS  Google Scholar 

  17. Kumano K, Upsher ME, Khairallah PA. ß-Adrenergic receptor response coupling in hypertrophied hearts. Hypertension 1993;5(Suppl 1):1175–1183.

    Google Scholar 

  18. Barnet DB. Myocardial ß-adrenoceptor function and regulation in heart failure: implications for therapy. Br J Clin Pharmacol 1989;27:527–537.

    Article  Google Scholar 

  19. Brodde OE. Beta 1-and beta 2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev 1991;43:203–242.

    PubMed  CAS  Google Scholar 

  20. Bristow MR. The adrenergic nervous system in heart failure. N Engl J Med 1984;311:850–851.

    Article  PubMed  CAS  Google Scholar 

  21. Gopalakrishnan M, Triggle DJ. The regulation of receptors, ion channels, and G proteins in congestive heart failure. Cardiovasc Drug Rev 1990;8:255–302.

    Article  CAS  Google Scholar 

  22. Brodde OE, Michel MC, Gordon EP, Sandoval A, Gilbert EM, Bristow MR. Beta-adrenoceptor regulation in the human heart: can it be monitored in circulating lymphocytes? Eur Heart J 1989;10(Suppl):B2–10.

    Article  Google Scholar 

  23. Michel MC, Beckeringh JJ, Ikezono K, Kretsch R, Brodde OE. Lymphocyte beta 2-adrenoceptors mirror precisely beta 2-adrenoceptor, but poorly beta 1-adrenoceptor changes in the human heart. J Hypertens 1986;4(Suppl):S215–218.

    CAS  Google Scholar 

  24. Steinfath M, Lavicky J, Schmitz W, Scholtz H, Döring V, Kalmár P. Regional distribution of ß1 and ß2 adrenoceptors in the failing and nonfailing human heart. Eur J Clinical Pharmacol 1992;42:607–612.

    CAS  Google Scholar 

  25. Delforge J, Syrota A, Lancon JP et al. Cardiac beta-adrenergic receptor density measured in vivo using PET, CGP 12177, and a new graphical method. J Nucl Med 1991;32:739–748.

    PubMed  CAS  Google Scholar 

  26. Lefroy DC, De Silva R, Choudhury L et al. Diffuse reduction of myocardial beta-adrenoceptors in hypertrophic cardiomyopathy: a study with positron emission tomography. J Am Coll Cardiol 1993;22:1653–1660.

    Article  PubMed  CAS  Google Scholar 

  27. Delforge J. Correction of a relationship that assesses beta-adrenergic receptor concentration with PET and carbon-11-CGP 12177. J Nucl Med 1994;35(5):921.

    PubMed  CAS  Google Scholar 

  28. Van Waarde A. Study of cardiac receptor ligands. In: Van der Wall EE, Blanksma PK, Niemeyer MG, and Paans AMJ, editors. Cardiac positron emission tomography. Dordrecht: Kluwer Academic Publishers, 1995.

    Google Scholar 

  29. Jones HA, Rhodes CG, Law MP et al. Rapid analysis for metabolites of 11C-labelled drugs: fate of 11C-S-4-(tert.-butylamino-2-hydroxypropoxy)-benzimidazol-2-one in the dog. J Chromatogr 1991;570:361–370.

    Article  PubMed  CAS  Google Scholar 

  30. Law MP. Demonstration of the suitability of CGP 12177 for in vivo studies of beta-adrenoceptors. Br J Pharmacol 1993; 109:1101–1109.

    Article  PubMed  CAS  Google Scholar 

  31. Van Waarde A, Meeder JG, Blanksma PK et al. Suitability of CGP-12177 and CGP-26505 for quantitative imaging of beta-adrenoceptors. Int J Rad Appl Instrum 1992;19:711–718.

    Google Scholar 

  32. Van Waarde A, Meeder JG, Blanksma PK et al. Uptake of radioligands by rat heart and lung in vivo: CGP 12177 does and CGP 26505 does not reflect binding to beta-adrenoceptors. Eur J Pharmacol 1992;222:107–112.

    Article  PubMed  Google Scholar 

  33. Merlet P, Delforge J, Syrota A et al. Positron emission tomography with 11C CGP-12177 to assess beta-adrenergic receptor concentration in idiopathic dilated cardiomyopathy. Circulation 1993;87:1169–1178.

    Article  PubMed  CAS  Google Scholar 

  34. Merlet P, Benvenuti C, Valette H et al. ß-receptors in human transplanted heart assessed with positron emission tomography. First international congress of nuclear cardiology 1993;1:4302 (Abstract).

    Google Scholar 

  35. Willemsen A. Parametric imaging of myocardial perfusion and metabolism. In: Van der Wall EE, Blanksma PK, Niemeyer MG, and Paans AMJ, editors. Cardiac positron emission tomography. Dordrecht: Kluwer Academic Publishers, 1995.

    Google Scholar 

  36. Baumann G, Riess G, Erhardt WD et al. Impaired ß-adrenergic stimulation in the uninvolved ventricle post-acute myocardial infarction: reversible defect due to excessive circulatory catecholamine-induced decline in number and affinity of ß-receptors. Am Heart J 1981;101:569–581.

    Article  PubMed  CAS  Google Scholar 

  37. Baumann G, Felix SB, Reib G, Loher U, Ludwig L, Blomer H. Effective stimulation of cardiac contractility and metabolism by impromidine and dimaprit-two new H2 agonistic compounds in the surviving, catecholamine-insensitive myocardium after coronary occlusion. J Cardiovasc Pharmacol 1982;5:542–553.

    Article  Google Scholar 

  38. Karliner JS, Stevens M, Grattan M, Woloszyn W, Honbo N, Hoffman JIE. Beta-adrenergic receptor properties of canine myocardium: effects of chronic myocardial infarction. J Am Coll Cardiol 1986;8:349–356.

    Article  PubMed  CAS  Google Scholar 

  39. Wolff AA, Hines DK, Karliner JS. Refined membrane preparations mask ischemic fall in myocardial ß-receptor density. Am J Physiol 1989;257:H1032–1036.

    PubMed  CAS  Google Scholar 

  40. Dominiak P, Turck D. Alterations of ß-adrenoceptors subsequent to myocardial infarction. Basic Res Cardiol 1986;81(Suppl 1):243–51.

    PubMed  CAS  Google Scholar 

  41. Wolff AA, Karliner JS. H2-histaminergic and ß-adrenergic adenyl cyclase activation is maintained despite receptor changes and Gs dysfunction during acute myocardial ischemia. Clin Res 1988;36:328A (Abstract).

    Google Scholar 

  42. Foster KA, Hock CE, Reibel DK. Altered responsiveness of hypertrophied rat hearts to α-and ß-adrenergic stimulation. J Mol Cell Cardiol 1991;23:91–101.

    Article  PubMed  CAS  Google Scholar 

  43. Ganguly PK, Lee SL, Beamish RE, Dhalla NS. Altered sympathetic system and adrenoceptors during the development of cardiac hypertrophy. Am Heart J 1989;118:520–525.

    Article  PubMed  CAS  Google Scholar 

  44. Michel MC, Kanczik R, Khamssi M et al. α-and ß-adrenoceptors in hypertension. I. Cardiac and renal α1-, ß1, and ß2-adrenoceptors in rat models of acquired hypertension. J Cardiovasc Pharmacol 1989;13:421–431.

    Article  PubMed  CAS  Google Scholar 

  45. Chevalier B, Mansier P, Callens-EI, Amrani F, Swynghedauw B. ß-adrenergic system is modified in compensatory pressure cardiac overload in rats: physiological and biochemical evidence. J Cardiovasc Pharmacol 1989;13:412–420.

    Article  PubMed  CAS  Google Scholar 

  46. Bocherens-Gadient SA, Quast U, Nussberger J, Brunner HR, Hof RP. Chronic adriamycin treatment and its effect on the cardiac beta-adrenergic system in the rabbit. J Cardiovasc Pharmacol 1992; 19:770–778.

    PubMed  CAS  Google Scholar 

  47. Yoshikawa T, Handa S, Suzuki M, Nagami K. Abnormalities in sympathoneuronal regulation are localized to failing myocardium in rabbit heart. J Am Coll Cardiol 1994;24:210–215.

    Article  PubMed  CAS  Google Scholar 

  48. Brodde OE, Daul A, Michel-Reher M et al. Agonist-induced desensitization of beta-adrenoceptor function in humans. Subtype-selective reduction in beta 1-or beta 2-adrenoceptor-mediated physiological effects by xamoterol or procaterol. Circulation 1990;81:914–921.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Anthonio, R.L. et al. (1995). Experimental and Clinical Cardiac Beta-receptor Studies. In: van der Wall, E.E., Blanksma, P.K., Niemeyer, M.G., Paans, A.M.J. (eds) Cardiac Positron Emission Tomography. Developments in Cardiovascular Medicine, vol 166. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0023-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0023-6_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4014-3

  • Online ISBN: 978-94-011-0023-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics