Skip to main content

The influence of prey hardness on Daphnia’s selectivity for large prey

  • Conference paper
Cladocera as Model Organisms in Biology

Part of the book series: Developments in Hydrobiology ((DIHY,volume 107))

Abstract

Two comparable methods were used to study the feeding of four species of Daphnia on large spherical particles which differed in size and hardness. The first method used gut analysis to estimate the selectivities of daphnids feeding in a broad size range of a single particle type, including polystyrene beads (4–60 µm diameter) in the laboratory and Eudorina colonies (10–90 µm) in the field. In the second method, Daphnia of different sizes fed in a mixture of 6.5 µm Chlamydomonas and one of eight test particles. Smaller daphnids were less effective in feeding on large test particles. Nonlinear regression was therefore used to estimate the Daphnia body size at which the clearance rate on a test particle was reduced to 50% of that for Chlamydomonas. The results of both methods show that prey size and hardness are both very important in determining daphnid feeding selectivity. For a given particle size, ‘soft’ algae (naked and gelatinous flagellates) are more readily ingested than ‘hard’ algae (diatoms and dinoflagellates), and ‘hard’ algae are more readily ingested than polystyrene beads. Daphnia can feed effectively on algae that are 2–5 times larger than the largest ingestible bead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bern, L., 1990a. Size-related discrimination of nutritive and inert particles by freshwater Zooplankton. J. Plankton Res. 12: 1059–1067.

    Article  Google Scholar 

  • Bern, L., 1990b. Post-capture particle size selection by Daphnia cucullata (Cladocera). Limnol. Oceanogr. 35: 923–926.

    Article  Google Scholar 

  • Bern, L., 1994. Particle selection over a broad size range by crustacean Zooplankton. Freshwat. Biol. 32: 105–112.

    Article  Google Scholar 

  • Bleiwas, A. H. & P. M. Stokes, 1985. Collection of large and small particles by Bosmina. Limnol. Oceanogr. 30: 1090–1092.

    Article  Google Scholar 

  • Burns, C. W., 1968. The relationship between body size of filter-feeding Cladocera and the maximum size of particle ingested. Limnol. Oceanogr. 13: 675–678.

    Article  Google Scholar 

  • DeMott, W. R., 1986. The role of taste in food selection by freshwater Zooplankton. Oecologia 69: 334–340.

    Article  Google Scholar 

  • DeMott, W. R., 1988. Discrimination between algae and artificial particles by freshwater and marine copepods. Limnol. Oceanogr. 33: 397–408.

    Article  Google Scholar 

  • DeMott, W. R., 1989. Optimal foraging theory as a predictor of chemically-mediated food selection by suspension-feeding copepods. Limnol. Oceanogr. 34: 140–154.

    Article  Google Scholar 

  • DeMott, W. R. & F. Moxter, 1991. Foraging on cyanobacteria by copepods: Responses to chemical defenses and resource abundance. Ecology 72: 1820–1834.

    Article  Google Scholar 

  • DeMott, W. R., 1993. Hunger-dependent diet selection in suspension-feeding Zooplankton. In Hughes, R. N. (ed.), Diet selection: An interdisciplinary approach to foraging behavior, Blackwell Scientific, Oxford: 102–123.

    Google Scholar 

  • Ferguson, A. J. D., J. M. Thompson & C. S. Reynolds, 1982. Structure and dynamics of Zooplankton communities maintained in closed systems with special reference to algal food supply. J. Plankton Res. 4: 523–543.

    Article  Google Scholar 

  • Fulton, R. S. III & H. W. Paerl, 1987. Effects of colonial morphology on Zooplankton utilization of algal resources during blue-green algal (Microcystis aeruginosa) blooms. Limnol. Oceanogr. 32: 634–644.

    Article  Google Scholar 

  • Gliwicz, Z. M., 1977. Food size selection and seasonal succession of filter feeding Zooplankton in an eutrophic lake. Ekol. Pol. 25: 179–225.

    Google Scholar 

  • Gliwicz, Z. M. & E. Siedlar, 1980. Food size limitation and algae interfering with food collection in Daphnia. Arch. Hydrobiol. 88: 155–177.

    Google Scholar 

  • Haney, J. F., 1987. Field studies on zooplankton-Cyanobacteriainteractions. N. Z. J. mar. Freshwat. Res. 21: 467–475.

    Article  Google Scholar 

  • Hartmann, H. J. & D. D. Kunkel, 1991. Mechanisms of food selection in Daphnia. Hydrobiologia 225 (Dev. Hydrobiol. 71): 129–154.

    Article  Google Scholar 

  • Infante, A. & W. T. Edmondson, 1985. Edible phytoplankton and herbivorous Zooplankton in Lake Washington. Arch. Hydrobiol. Beih. Ergenb. Limnol. 21: 161–171.

    Google Scholar 

  • Jack, J. D. & J. J. Gilbert, 1993. Susceptibilities of different-sized ciliates to direct suppression by small and large cladocerans. Freshwat. Biol. 29: 19–29.

    Article  Google Scholar 

  • Jandel Scientific, 1992. SigmaPlot Scientific Graph System: Transforms and Curve Fitting Reference.

    Google Scholar 

  • Jarvis, A. C., R. C. Hart & S. Combrink, 1987. Zooplankton feeding on size fractionated Microcystis colonies and Chlorella in a hypertrophic lake (Hartbeespoort Dam, South Africa): implications to resource utilization and Zooplankton succession. J. Plankton Res. 9: 1231–1249.

    Article  Google Scholar 

  • Kerfoot, W. C., W. R. DeMott & D. L. DeAngelis, 1985. Interactions among cladocerans: food limitation and exploitative competition. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 431–451.

    Google Scholar 

  • Kerfoot, W. C. & K. L. Kirk, 1991. Degree of taste discrimination among suspension-feeding cladocerans and copepods: Implications for detritivory and herbivory. Limnol. Oceanogr. 36: 1107–1123.

    Article  Google Scholar 

  • Knoechel, R. & L. B. Holtby, 1986. Cladoceran filtering rate: body length relationships for bacterial and large algal particles. Limnol. Oceanogr. 31: 195–200.

    Article  Google Scholar 

  • Kobayashi, T., 1991. Body lengths and maximum gut food-particles sizes of the dominant cladocerans and calanoid copepods in Wallerawang Reservoir, New South Wales. Aust. J. mar. Freshwat. Res. 42: 399–408.

    Article  Google Scholar 

  • Lampert, W., 1987. Feeding and nutrition in Daphnia. In Peters, R.H. & R. de Bernardi (eds), Daphnia. Mem. Ist. ital. Idrobiol. 45: 143–192.

    Google Scholar 

  • Lampert, W. & B. E. Taylor, 1985. Zooplankton grazing in aeutrophic lake: implications of diel vertical migration. Ecology 66: 68–82.

    Article  Google Scholar 

  • McCauley, E. & J. A. Downing, 1985. The prediction of cladoceran grazing rate spectra. Limnol. Oceanogr. 30: 202–212.

    Article  Google Scholar 

  • Meise, C. J., W. R. Munns, Jr. & N. G. Hairston, Jr., 1985. An analysis of the feeding behavior of Daphnia pulex. Limnol. Oceanogr. 30: 862–870.

    Article  Google Scholar 

  • Porter, K. G., 1975. Viable gut passage of gelatinous green algae ingested by Daphnia. Verh. int. Ver. Limnol. 19: 2840–2850.

    Google Scholar 

  • Reynolds, C. S. & M. W. Rogers, 1983. Cell-and colony-division in Eudorina (Chlorophyta: Volvocales) and some ecological implications. Br. phycol. J. 18: 111–119.

    Article  Google Scholar 

  • Reynolds, C. S., J. M. Thompson, A. J. D. Ferguson & S. W. Wiseman, 1982. Loss processes in the population dynamics of phytoplankton maintained in closed systems. J. Plankton Res. 4: 561–600.

    Article  Google Scholar 

  • Schoenberg, S. A. & R. E. Carlson, 1984. Direct and indirect effects of Zooplankton grazing on phytoplankton in a hypereutrophic lake. Oikos 42: 291–302.

    Article  CAS  Google Scholar 

  • Stemberger, R. S., 1981. A general approach to the culture of planktonic rotifers. Can. J. Fish. aquat. Sci. 38: 721–724.

    Article  Google Scholar 

  • Taylor, D. J.& P. D. N. Hebert, 1992. Daphnia galeata mendotae as a cryptic species complex with interspecific hybrids. Limnol. Oceanogr. 37: 658–665.

    Article  Google Scholar 

  • Vanderploeg, H. A. & D. Scavia, 1979. Two electivity indices for feeding with special reference to Zooplankton grazing. J. Fish. Res. Bd Can. 36: 362–365.

    Article  Google Scholar 

  • Wickham, S. A. & J. J. Gilbert, 1993. The comparative importance of competition and predation by Daphnia on ciliated protists. Arch. Hydrobiol. 126: 289–313.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

DeMott, W.R. (1995). The influence of prey hardness on Daphnia’s selectivity for large prey. In: Larsson, P., Weider, L.J. (eds) Cladocera as Model Organisms in Biology. Developments in Hydrobiology, vol 107. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0021-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0021-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4013-6

  • Online ISBN: 978-94-011-0021-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics