Skip to main content

The Discrete Korteweg—de Vries Equation

  • Chapter
KdV ’95
  • 428 Accesses

Abstract

We review the different aspects of integrable discretizations in space and time of the Korteweg—de Vries equation, including Miura transformations to related integrable difference equations, connections to integrable mappings, similarity reductions and discrete versions of Painlevé equations as well as connections to Volterra systems.

Mathematics Subject Classifications (1991): 58F07.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Korteweg, D. J. and de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philosophical Magazine 39 (1895), 422–443.

    Article  MATH  Google Scholar 

  2. Gardner, C. S., Greene, J. M., Kruskal, M. D., and Miura, R. M.: Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19 (1967), 1095–1097.

    Article  MATH  Google Scholar 

  3. Zakharov, V. E. and Shabat, A. B.: Exact theory of two-dimensional self-focussing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP 34 (1972), 62–69.

    MathSciNet  Google Scholar 

  4. Ablowitz, M. J., Kaup, D., Newell, A. C., and Segur, H.: The inverse scattering transform Fourier analysis for nonlinear problems, Stud. Appl. Math. 53 (1974), 249–315.

    MathSciNet  Google Scholar 

  5. Bäcklund, A. V.: Über Flachentransformationen, Math. Ann. 9 (1876), 207–320; Zur Theorie der Flachentransformationen, Math. Ann. 19 (1882), 387–422.

    Google Scholar 

  6. Darboux, G.: Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitesimal, Vols 1–4, Gauthier-Villars, Paris, 1887–1896.

    MATH  Google Scholar 

  7. Bianchi, L.: Lezioni di geometria differenziale, Enrico Spoerri, Pisa, 1894.

    MATH  Google Scholar 

  8. Nörlund, N. E.: Vorlesungen über Differenzrechnung, Kopenhagen, 1923.

    Google Scholar 

  9. Birkhoff, G. D.: General theory of linear difference equations, Trans. Amer. Math. Soc. 12 (1911), 243–284; The generalized Riemann problem for linear differential equations and the allied problems for linear difference and q-difference equations, Proc. Am. Acad. Arts Sci. 49 (1913), 521–568.

    Article  MathSciNet  MATH  Google Scholar 

  10. Nijhoff, F. W., Quispel, G. R. W., and Capel, H. W.: Direct linearization of Nonlinear difference-difference equations, Phys. Lett. 97A (1983), 125–128.

    MathSciNet  Google Scholar 

  11. Quispel, G. R. W., Nijhoff, F. W., Capel, H. W., and van der Linden, J.: Linear integral equations and nonlinear difference-difference equations, Physica 125A (1984), 344–380.

    Google Scholar 

  12. Nijhoff, F. W., Capel, H. W., Wiersma, G. L., and Quispel, G. R. W.: Bäcklund transformations and three-dimensional lattice equations, Phys. Lett. 105A (1984), 267–272.

    MathSciNet  Google Scholar 

  13. Nijhoff, F. W., Capel, H., and Wiersma, G. L.: Integrable lattice systems in two-and threedimensions, in R. Martini (ed.), Geometric Aspects of the Einstein Equations and Integrable Systems, Springer Lect. Notes Phys. Vol. 239 (1985), pp. 263–302.

    Chapter  Google Scholar 

  14. Wiersma, G. and Capel, H. W: Lattice equations, hierarchies and Hamiltonian structures, Physica 142A (1987), 199–244; ibid. 149A (1988), 49–74.

    MathSciNet  Google Scholar 

  15. Nijhoff, F. W. and Papageorgiou, V. G.: Lattice equations associated with the Landau-Lifschitz equations, Phys. Lett. 141A (1989), 269–274.

    MathSciNet  Google Scholar 

  16. Nijhoff, F. W. and Capel, H. W: The direct linearisation approach to hierarchies of integrable PDE’s in 2 + 1 dimensions: I. Lattice equations and the differential-difference hierarchies, Inv. Problems 6 (1990), 567–590.

    Article  MathSciNet  MATH  Google Scholar 

  17. Nijhoff, F. W., Papageorgiou, V. G., Capel, H. W., and Quispel, G. R. W: The lattice Gel’fand-Dikii hierarchy, Inv. Problems 8 (1992), 597–621.

    Article  MathSciNet  MATH  Google Scholar 

  18. Capel, H. W. and Nijhoff, F. W.: Integrable lattice equations, in A. S. Fokas and V. E. Zakharov (eds), Important Developments in Soliton Theory, Lect. Notes in Nonlinear Dynamics, Springer, 1993, pp. 38–57.

    Chapter  Google Scholar 

  19. Ablowitz, M. J. and Ladik, F. J.: A nonlinear difference scheme and inverse scattering, Stud. Appl Math. 55 (1976), 213–229; On the solution of a class of nonlinear partial difference equations, ibid. 57 (1977), 1–12.

    MathSciNet  Google Scholar 

  20. Hirota, R.: Nonlinear partial difference equations, I-III, J. Phys. Soc. Japan 43 (1977), 1424–1433, 2074–2089.

    Article  MathSciNet  Google Scholar 

  21. Hirota, R.: Discrete analogue of generalized Toda equation, J. Phys. Soc. Japan 50 (1981), 3785–3791.

    Article  MathSciNet  Google Scholar 

  22. Levi, D., Pilloni, L., and Santini, P. M.: Integrable three-dimensional lattices, J. Phys. A: Math. Gen. 14 (1981), 1567–1575.

    Article  MathSciNet  MATH  Google Scholar 

  23. Date, E., Jimbo, M., and Miwa, T.: Method for generating discrete soliton equations, I-V, J. Phys. Soc. Japan 51 (1982), 4116–4131, 52 (1983), 388–393, 761–771.

    Article  MathSciNet  Google Scholar 

  24. Kac, M. and van Moerbeke, P.: On an explicitly soluble system on nonlinear differential equations related to certain Toda lattices, Adv. Math. 16 (1975), 160–169.

    Article  MATH  Google Scholar 

  25. Krichever, I. M. and Novikov, S. P.: Holomorphic bundles over algebraic curves and nonlinear equations, Russ. Math. Surv. 35 (1980), 53–79.

    Article  MathSciNet  MATH  Google Scholar 

  26. Faddeev, L. D. and Tahktajan, L. A.: Liouville Model on the Lattice, Lect. Notes Phys., Vol 246, Springer, 1986, pp. 166–179.

    Article  Google Scholar 

  27. Volkov, A. Yu.: Miura transformation on the lattice, Theor. Math. Phys. 74 (1988), 96–99.

    Article  MATH  Google Scholar 

  28. Drinfel’d, V. G. and Sokolov, V. V: Equations of KdV type and simple Lie algebras, Sov. Math. Dokl. 23 (1981), 457–462; J. Sov. Math. 30 (1985), 1975.

    MATH  Google Scholar 

  29. Quispel, G. R. W., Nijhoff, F. W., and Capel, H. W.: Linearization of the Boussinesq equation and of the modified Boussinesq equation, Phys. Lett. 91A (1982), 143–145.

    MathSciNet  Google Scholar 

  30. Airault, H., McKean, H., and Moser, J.: Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem, Comm. Pure Appl. Math. 30 (1977), 95–148.

    Article  MathSciNet  MATH  Google Scholar 

  31. Nijhoff, F. W. and Pang, G. D.: A time-discretized version of the Calogero-Moser model, Phys. Lett. 191A (1994), 101–107.

    MathSciNet  Google Scholar 

  32. Nijhoff, F. W. and Pang, G. D.: Discrete-time Calogero-Moser model and lattice KP equations, in D. Levi, L. Vinet and P. Winternitz (eds), Proc. of the Int. Workshop on Symmetries and Integrability of Difference Equations, CRM Lecture Notes and Proceedings, to appear, hepth/9409071.

    Google Scholar 

  33. Nijhoff, F. W., Ragnisco, O., and Kuznetsov, V.: Integrable time-discretisation of the Ruijsenaars-Schneider model, Preprint No. 94–27, University of Amsterdam, hep-th/9412170.

    Google Scholar 

  34. Papageorgiou, V. G., Nijhoff, F. W., and Capel, H. W.: Integrable mappings and nonlinear integrable lattice equations, Phys. Lett. 147A (1990), 106–114.

    MathSciNet  Google Scholar 

  35. McMillan, E. M.: in W. E. Brittin and H. Odabasi (eds), Topics in Physics, Colorado Associated Univ. Press, Boulder, 1971, p. 219.

    Google Scholar 

  36. Capel, H. W., Nijhoff, F. W., and Papageorgiou, V. G.: Complete integrability of Lagrangian mappings and lattices of KdV type, Phys. Lett. 155A (1991), 377–387.

    MathSciNet  Google Scholar 

  37. Belokolos, E. D., Bobenko, A. I., Enolskii, V. Z., Its, A. R., and Matveev, V. B.: Algebro-Geometric Approach to Nonlinear Evolution Equations, Springer-Verlag, 1994.

    Google Scholar 

  38. Nijhoff, F. W., Papageorgiou, V. G., and Capel, H. W.: Integrable time-discrete systems: lattices and mappings, in P. P. Kulish (ed.), Quantum Groups, LNM, Vol. 1510, Springer, 1992, pp. 312–325.

    Chapter  Google Scholar 

  39. Nijhoff, F. W., Capel, H. W., and Papageorgiou, V. G.: Integrable quantum mappings, Phys. Rev. A46 (1992), 2155–2158.

    MathSciNet  Google Scholar 

  40. Quispel, G. R. W. and Nijhoff, F. W.: Integrable two-dimensional quantum mappings, Phys. Lett. 161A (1991), 419–422.

    MathSciNet  Google Scholar 

  41. Nijhoff, F. W. and Capel, H. W.: Integrable quantum mappings and non-ultralocal Yang-Baxter structures, Phys. Lett. A163 (1992), 49–56.

    MathSciNet  Google Scholar 

  42. Nijhoff, F. W. and Capel, H. W.: Integrability and fusion algebra for quantum mappings, J. Phys. A26 (1993), 6385–6407.

    MathSciNet  Google Scholar 

  43. Nijhoff, F. W. and Capel, H. W.: Integrable quantum mappings and quantization aspects of discrete-time integrable systems, in P. A. Clarkson (ed.), Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, NATO ASI Series C, Vol. 413, Kluwer Acad. Publ., Dordrecht, 1993, pp. 163–182.

    Chapter  Google Scholar 

  44. Nijhoff, F. W. and Capel, H. W.: Quantization of integrable mappings, Springer Lect. Notes Phys. 424 (1993), 187–211.

    Article  MathSciNet  Google Scholar 

  45. Faddeev, L. D. and Volkov, A. Yu.: Quantum inverse scattering method on a space-time lattice, Theor. Math. Phys. 92 (1992), 837–842.

    Article  MathSciNet  Google Scholar 

  46. Quispel, G. R. W., Roberts, J. A. G., and Thompson, C. J.: Integrable mappings and soliton equations, Phys. Lett. A126 (1988), 419–421; ibid. II, Physica D34 (1989), 183–192.

    MathSciNet  Google Scholar 

  47. Veselov, A. P.: Integrable maps, Russ. Math. Surv. 46(5) (1991), 1–51.

    Article  MathSciNet  MATH  Google Scholar 

  48. Bruschi, M., Ragnisco, O., Santini, P. M., and Tu, G.-Z.: Integrable symplectic maps, Physica 49D (1991), 273–294.

    MathSciNet  Google Scholar 

  49. Veselov, A. P.: Growth and integrability in the dynamics of maps, Comm. Math. Phys. 145 (1992), 181–193.

    Article  MathSciNet  MATH  Google Scholar 

  50. Veselov, A. P.: Integrable Lagrangian correspondences and the factorization of matrix polynomials, Funct. Anal. Appl. 25 (1991), 112–122;

    Article  MathSciNet  MATH  Google Scholar 

  51. Deift, P. A., Li, L. C., and Tomei, C.: Matrix factorizations and integrable systems, Comm. Pure Appl. Math. 42 (1989), 443–521;

    Article  MathSciNet  MATH  Google Scholar 

  52. Moser, J. and Veselov, A. P.: Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys. 139 (1991), 217–243.

    Article  MathSciNet  MATH  Google Scholar 

  53. Suris, Yu. B.: Integrable mappings of the standard type, Funct. Anal. Appl. 23 (1989), 74–79; Generalized Toda lattices in discrete time, Leningrad Math. J. 2 (1991), 339–352.

    Article  MathSciNet  MATH  Google Scholar 

  54. Ablowitz, M. J. and Segur, H.: Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981.

    Book  MATH  Google Scholar 

  55. Its, A. R. and Novokshenov, V. Y.: The Isomonodromic Deformation Theory in the Theory of Painlevé Equations, Lect. Notes Math., Vol. 1191, Springer-Verlag, Berlin, 1986.

    MATH  Google Scholar 

  56. Ablowitz, M. J. and Clarkson, P. A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering, LMS Lect. Notes, Vol. 149, Cambridge University Press, 1991.

    Book  MATH  Google Scholar 

  57. Painlevé, P.: Memoire sur les équations différentielles dont l’intégrale générale est uniforme, Bull. Soc. Math. France 28 (1900), 201–261; Sur les équations différentielles du second ordre et d’ordre supérieur dont l’intégrale générale est uniforme, Acta Math. 25 (1902), 1–85.

    MathSciNet  MATH  Google Scholar 

  58. Gambier, B.: Sur les équations différentielles du second ordre et du premier degré ’dont l’intégrale générale est à points critiques fixés, Acta Math. 33 (1909), 1–55.

    Article  MathSciNet  MATH  Google Scholar 

  59. Ince, E. L.: Ordinary Differential Equations, Dover Publ., New York, 1956.

    Google Scholar 

  60. Grammaticos, B. and Ramani, A.: Discrete Painlevé equations: Derivation and properties, in P. A. Clarkson (ed.), Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, NATO ASI Series C, Vol. 413, Kluwer Acad. Publ, Dordrecht, 1993, pp. 299–314.

    Chapter  Google Scholar 

  61. Nijhoff, F. W. and Papageorgiou, V. G.: Similarity reductions of integrable lattices and discrete analogues of the Painlevé II equation, Phys. Lett. 153A (1991), 337–344.

    MathSciNet  Google Scholar 

  62. Fokas, A. S., Its, A. R., and Kitaev, A. V: Discrete Painlevé equations and their appearance in quantum gravity, Comm. Math. Phys. 142 (1991), 313–344.

    Article  MathSciNet  MATH  Google Scholar 

  63. Ramani, A., Grammaticos, B., and Hietarinta, J.: Discrete versions of the Painlevé equations, Phys. Rev. Lett. 67 (1991), 1829–1832.

    Article  MathSciNet  MATH  Google Scholar 

  64. Papageorgiou, V. G., Nijhoff, F. W., Grammaticos, B., and Ramani, A.: Isomonodromic deformation problems for discrete analogues of Painlevé equations, Phys. Lett. A164 (1992), 57–64.

    MathSciNet  Google Scholar 

  65. Nijhoff, F. W.: On a q-deformation of the discrete Painlevé I equation and q-orthogonal polynomials, Lett. Math. Phys. 30 (1994), 327–336.

    Article  MathSciNet  MATH  Google Scholar 

  66. Gross, D. J. and Migdal, A. A.: Non-perturbative two-dimensional quantum gravity, Phys. Rev. Lett. 64 (1990), 127; Nucl. Phys. B340 (1990), 333.

    Article  MathSciNet  MATH  Google Scholar 

  67. Alvarez, O. and Windey, P.: Universality in two-dimensional quantum gravity, Nucl. Phys. B348 (1991), 490.

    Article  MathSciNet  Google Scholar 

  68. Papageorgiou, V. G, Grammaticos, B., and Ramani, A.: Integrable lattices and convergence acceleration algorithms, Phys. Lett. 179A (1993), 111–115.

    MathSciNet  Google Scholar 

  69. Brezinski, C: Accélération de la Convergence en Analyse Numérique, Lecture Notes in Mathematics, Vol. 584, Springer, 1970.

    Google Scholar 

  70. Papageorgiou, V. G, Grammaticos, B., and Ramani, A.: Orthogonal polynomial approach to discrete Lax pairs for initial-value-boundary problems of the QD-algorithm, to appear in Lett. Math. Phys.

    Google Scholar 

  71. Brezinski, C: Padé-Type Approximation and General Orthogonal Polynomials, ISNM, Vol. 50, Birkhäuser Verlag, 1980.

    MATH  Google Scholar 

  72. Gragg, W. B.: The Padé table and its relation to certain algorithms of numerical analysis, SIAM Rev. 14 (1972), 1–62.

    Article  MathSciNet  MATH  Google Scholar 

  73. Fokas, A. S. and Ablowitz, M. J.: Linearization of the Korteweg-de Vries and painlevé II equations, Phys. Rev. Lett. 47 (1981), 1096–1100.

    Article  MathSciNet  Google Scholar 

  74. Nijhoff,F. W., Quispel, G. R. W., van der Linden, J., and Capel, H. W.: On some linear integral equations generating solutions of nonlinear partial differential equations, Physica 119A (1983), 101–142.

    Google Scholar 

  75. Nijhoff, F. W.: Linear integral transformations and hierarchies of integrable nonlinear evolution equations, Physica D31 (1988), 339–388.

    MathSciNet  Google Scholar 

  76. Santini, P. M., Fokas, A. S., and Ablowitz, M. J.: The direct linearization of a class of nonlinear evolution equations, J. Math. Phys. 25 (1984), 2614–2619.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michiel Hazewinkel Hans W. Capel Eduard M. de Jager

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nijhoff, F., Capel, H. (1995). The Discrete Korteweg—de Vries Equation. In: Hazewinkel, M., Capel, H.W., de Jager, E.M. (eds) KdV ’95. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0017-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0017-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4011-2

  • Online ISBN: 978-94-011-0017-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics