Skip to main content

Algebraic—Geometrical Methods in the Theory of Integrable Equations and Their Perturbations

  • Chapter
KdV ’95
  • 436 Accesses

Abstract

The year of 1995 is not merely the centenary of the Korteweg—de Vries equation which we celebrate at this conference. It is also the year of the ‘majority’ of the finite-gap or algebraic—geometrical theory of integration of nonlinear equations — one of the most important components of the branch of modern mathematical physics, which is called the theory of integrable systems or the soliton theory. The main goal of this paper is to present the key points of the finite-gap theory and some of its applications. Part of its applications is directly related to the KdV equation, while a part of them lies beyond the framework of not only this particular equation but the theory of soliton equations in general. Corresponding examples refer to the string theory and topological field theory models. Not aspiring to be exhaustive, they manifest versatility of the methods, the origin of which would be forever related to the magic words: Korteweg—de Vries Equation.

Mathematics Subject Classifications (1991): 58F07.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dubrovin, B., Matveev, V., and Novikov, S.: Non-linear equations of Korteweg-de Vries type, finite zone linear operators and Abelian varieties, Uspekhi Mat. Nauk 31(1) (1976), 55–136.

    MathSciNet  MATH  Google Scholar 

  2. Zakharov, V., Manakov, S., Novikov, S., and Pitaevski, L.: Soliton Theory, Nauka, Moscow, 1980.

    Google Scholar 

  3. Lax, P.: Periodic solutions of Korteweg-de Vries equation, Comm. Pure Appl. Math. 28 (1975), 141–188.

    Article  MathSciNet  MATH  Google Scholar 

  4. McKean, H. and van Moerbeke, P.: The spectrum of Hill’s equation, Invent. Math. 30 (1975), 217–274.

    Article  MathSciNet  MATH  Google Scholar 

  5. Krichever, I. M: The algebraic-geometrical construction of Zakharov-Shabat equations and their periodic solutions, Doklady Akad. Nauk USSR 227(2) (1976), 291–294.

    Google Scholar 

  6. Krichever, I.: The integration of non-linear equations with the help of algebraic-geometrical methods, Funk. Anal. Pril. 11(1) (1977), 15–31.

    MathSciNet  MATH  Google Scholar 

  7. Krichever, I.: Spectral theory of two-dimensional periodic operators and its applications, Uspekhi Mat. Nauk 44(2) (1989), 121–184.

    MathSciNet  Google Scholar 

  8. Krichever, I.: Averaging method for two-dimensional integrable equations, Funk. Anal. Pril. 22(3) (1988), 37–52.

    MathSciNet  Google Scholar 

  9. Feldmann, J., Knorrer, H., and Trubowitz, E.: Riemann surfaces of the infinite genus, Preprint ETH, Zurich.

    Google Scholar 

  10. Shiota, T: Characterization of Jacobian varieties in terms of soliton equations, Invent. Math. 83 (1986), 333–382.

    Article  MathSciNet  MATH  Google Scholar 

  11. Takebe, T.: Representation theoretical meaning for the initial value problem for the Toda lattice hierarchy: I, Lett. Math. Phys. 21 (1991), 77–84.

    Article  MathSciNet  MATH  Google Scholar 

  12. Sato, M.: Soliton equations and universal Grassmann manifold, Math. Lect. Notes Ser. 18, Sophia University, Tokyo, 1984.

    Google Scholar 

  13. Dubrovin, B., Krichever, I., and Novikov, S.: The Schrödinger equation in a periodic field and Riemann surfaces, Soviet Dokl. 229(1) (1976), 15–18.

    Google Scholar 

  14. Krichever, I.: The t-function of the universal Whitham hierarchy, matrix models and topological field theories, Comm. Pure Appl. Math. 47 (1994), 437–475.

    Article  MathSciNet  MATH  Google Scholar 

  15. Takasaki, K. and Takebe, K.: SDiff(2) Toda equation hierarchy, tau-function and symmetries, Preprint RIMS-790, Kyoto.

    Google Scholar 

  16. Takebe, K.: Area-preserving diffeomorphisms and nonlinear integrable systems, in: Proceedings of Topological and Geometrical Methods in Field Theory, May 1991, Turku, Finland.

    Google Scholar 

  17. Saveliev, M.: On the integrability problem of the continuous long wave approximation of the Toda lattice, Preprint ENSL, Lyon, 1992.

    Google Scholar 

  18. Zakharov, V.: Benney equations and quasi-classical approximation in the inverse problem method, Funk. Anal. Pril. 14(2) (1980), 89–98.

    Article  MATH  Google Scholar 

  19. Tsarev, S.: The geometry of Hamiltonian systems of hydrodynamic type, Izvest. USSR, Ser. Matem. 54(5) (1990), 96–154.

    MathSciNet  Google Scholar 

  20. Dubrovin, B. and Novikov, S.: The Hamiltonian formalism of one-dimensional systems of hydrodynamic type and Bogolyubov-Whitham averaging method, Sov. Math. Dokl. 27 (1983) 665–669.

    MATH  Google Scholar 

  21. Dubrovin, B. and Novikov, S.: Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory, Russ. Math. Surveys 44(6) (1989), 35–124.

    Article  MathSciNet  MATH  Google Scholar 

  22. Novikov, S.: The geometry of conservative systems of hydrodynamics type. The method of averaging for field-theoretical systems, Russ. Math Surveys 40(4) (1985), 85–98.

    Article  MATH  Google Scholar 

  23. Krichever, I.: The dispersionless Lax equations and topological minimal models, Comm. Math. Phys. 143(2) (1992), 415–429.

    Article  MathSciNet  MATH  Google Scholar 

  24. Krichever, I.: Whitham theory for integrable systems and topological field theories, to appear in: Proceedings of Summer Cargese School, July, 1991.

    Google Scholar 

  25. Verlinder, E. and Verlinder, H.: A solution of two-dimensional topological quantum gravity, Preprint IASSNS-HEP-90/40, PUPT-1176, 1990.

    Google Scholar 

  26. Dubrovin, B.: Hamiltonian formalism of Whitham-type hierarchies and topological Landau-Ginsburg models, Comm. Math. Phys. 145(1) (1992), 195–207.

    Article  MathSciNet  MATH  Google Scholar 

  27. Dubrovin, B.: Differential geometry of moduli spaces and its application to soliton equations and to topological conformal field theory, Preprint No. 117, Scuola Normale Superiore, Pisa, November 1991.

    Google Scholar 

  28. Blok, B. and Varchenko, A.: Topological conformal field theories and the flat coordinates, Int. J. Modern Phys. A 7, 1467–1490.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michiel Hazewinkel Hans W. Capel Eduard M. de Jager

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krichever, I. (1995). Algebraic—Geometrical Methods in the Theory of Integrable Equations and Their Perturbations. In: Hazewinkel, M., Capel, H.W., de Jager, E.M. (eds) KdV ’95. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0017-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0017-5_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4011-2

  • Online ISBN: 978-94-011-0017-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics