Skip to main content

Solitons and the Korteweg—de Vries Equation: Integrable Systems in 1834–1995

  • Chapter
KdV ’95
  • 442 Accesses

Abstract

We trace the connections back from the paper by D. J. Korteweg and G. de Vries of 1895 to the sequence of events which began in August 1834 when J. S. Russell observed the soliton and so explain why KdV’s paper was so much concerned with ‘change of form of long waves’. From this we trace a forward path which since 1895 has seen the discovery of the inverse method, associated with this a far-reaching mathematical structure, and at 1995 found a basis for two-dimensional quantum gravity intimately connected with the Korteweg—de Vries equation.

Mathematics Subject Classifications (1991): 58F07.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Korteweg, D. J. and de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Series 5, Vol. 39, No. 241, June 1895, pp. 422–443

    Google Scholar 

  2. Korteweg, D. J. and de Vries, G.:[Phil. Mag. 39 (1895), 422–443].

    MATH  Google Scholar 

  3. Russell, J. S.: Experimental researches into the laws of certain hydrodynamical phenomena that accompany the motion of floating bodies and have not previously been reduced into conformity with the laws of resistance of fluids, Trans. Royal Soc. Edinburgh, XIV (1840), 47–109.

    Google Scholar 

  4. Russell, J. S.: Report on waves, British Association Reports, 1844.

    Google Scholar 

  5. Bullough, R. K.: The wave ‘par excellence’, the solitary, progressive great wave of equilibrium of the fluid -an early history of the solitary wave, in M. Lakshmanan (ed.), Solitons, Springer Ser. in Nonlinear Dynamics, Springer-Verlag, Heidelberg, 1988, pp. 7–42.

    Google Scholar 

  6. Zabusky, N. and Kruskal, M. D.: Phys. Rev. Lett. 15 (1965), 240.

    Article  MATH  Google Scholar 

  7. Gardner, C. S., Greene, J. M., Kruskal, M. D., and Miura, R. M.: Phys. Rev. Lett. 19 (1967), 1995.

    Article  Google Scholar 

  8. Bullough, R. K. and Bogoliubov, N. M.: in Sultan Catto and Alveney Rocha (eds), Proc XXth Conference on Differential and Geometric Methods in Theoretical Physics, World Scientific, Singapore, 1992, pp. 488–504.

    Google Scholar 

  9. Bullough, R. K. and Bogoliubov, N. M.: in A. S. Fokas, D. J. Kaup, A. C. Newell and V. E. Zakharov (eds), Nonlinear Processes in Physics, Springer Ser. in Nonlinear Dynamics, Springer-Verlag, Berlin, 1993, pp. 232–240.

    Chapter  Google Scholar 

  10. Kadomtsev, B. B. and Petviashvili, V. I.: Sov. Phys. Dokl. 15 (1970), 539–541.

    MATH  Google Scholar 

  11. Ikezi, H., Taylor, R. J., and Baker, R. D.: Phys. Rev. Lett. 25 (1970), 11.

    Article  Google Scholar 

  12. Bullough, R. K.: in Interaction with Radiation and Matter, Vol. 1, International Atomic Agency, Vienna (IAEA-SMR-20/51), 1977.

    Google Scholar 

  13. Russell, J. S.: The wave of translation and the work it does as the carrier wave of sound, Proc. Royal Soc. 32 (1881), 382–383.

    Article  Google Scholar 

  14. Bullough, R. K. and Caudrey, R J. (eds): Solitons, Springer Topics in Current Physics, Vol. 17, Springer-Verlag, Heidelberg, 1980, Chapter 1.

    Google Scholar 

  15. Kruskal, M. D.: Private communication at the John Scott Russell meeting, 1982.

    Google Scholar 

  16. Stokes, Sir George: Trans. Camb. Phil. Soc. 8 (1847), 441.

    Google Scholar 

  17. Lagrange, J. L.: Méchanique Analytique, pp. XII, 512 Chez La Veuve Desaint, Paris (1788), 1811–1815, Nouvelle Edition Augmenté par L’auteur, 2 Vols., Paris.

    Google Scholar 

  18. Laplace, P. S. (Marquis de Laplace): Traité de méchanique céleste, Chez J. B. M. Duprat Paris au VII (1799), 1799–1823.

    Google Scholar 

  19. Poisson, S. D.: Mémoires sur la théorie des ondes, Mem. de l’Acad Roy ale des Sciences (i), 1816.

    Google Scholar 

  20. Weber, E. H. and Weber, W: Wellenlehre auf Experimente gegründet, oder über tropfbaren Flüssigkeiten mit Adwendung auf die Schall und Licht-Wellen, Leipzig, 1825.

    Google Scholar 

  21. Emerson, G. S.: John Scott Russell. A Great Victorian Engineer and Naval Architect, John Murray, London, 1977.

    Google Scholar 

  22. Airy, Sir. G. B. (Astronomer Royal): Tides and waves, Encyclopaedia Metropolitana, 1845.

    Google Scholar 

  23. de Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures et Appliquées 2 (1872), 55.

    Google Scholar 

  24. Rayleigh, Lord (J. W. Strutt): On waves, Phil. Mag. 1 (1876), 257.

    MATH  Google Scholar 

  25. Russell, J. S.: The Wave of Translation in the Oceans of Water, Air and Ether, Trubner, London, 1895.

    Google Scholar 

  26. Herschel, Sir John: quoted by Russell in his book The Modern System of Naval Architecture, Day and Son, London, 1865.

    Google Scholar 

  27. Stokes, Sir George: British Association Reports, 1846.

    Google Scholar 

  28. We cannot now find the explicit reference by Stokes on this point. But (see [4]) Rayleigh [22] in a footnote added in 1899 (to his collected papers) quotes Stokes’s supplement to [14] in Stokes’s Mathematical and Physical Papers, Vol. 1, Cambridge University Press, Cambridge, 1880, indicating that like the work of KdV [1] Stokes’s later work confirms the existence of absolutely permanent waves of finite height. In this supplement to [14] Stokes develops the analysis at finite depth to 3rd order. He finds \({{m{c^2}} \over y} = {{{D_1}} \over {{S_1}}} + {1 \over {{S_1}{D_1}}}({S_4} + 2{S_2} + 12){b^2}\) where Si = eimk/c + e-imfc, i = 1, 2,..., Di = eimk/c -eimkc, k = ch and b D1 = a. In this paper he introduces the stream function Ψ as well as the velocity potential ϕ= -k (a different k) at the canal bottom.

    Google Scholar 

  29. St. Venant, B. de: Comptes Rendus, Vol. CI, 1885, reference taken from KdV [1].

    Google Scholar 

  30. McCowan, J.: On the solitary wave, Phil Mag. 31 (1891), 45

    Google Scholar 

  31. McCowan, J.: On the highest wave of permanent type, Phil Mag. 38 (1894), 351.

    MATH  Google Scholar 

  32. Caudrey, P. J.: Physica D6 (1982), 51.

    MathSciNet  Google Scholar 

  33. Caudrey, P. J.: in A. P. Fordy (ed.), Soliton Theory: a Survey of Results, Manchester University Press, Manchester, 1990, pp. 25–54; 55—74.

    Google Scholar 

  34. Lamb, Sir Horace: Hydrodynamics (6th edn.), Cambridge University Press, Cambridge, 1952.

    Google Scholar 

  35. Ince, E. L.: Ordinary Differential Equations, Dover, New York, 1956.

    Google Scholar 

  36. Fermi, E., Pasta, J. R., and Ulam, S. M.: Studies of Nonlinear Problems, Vol. 1, Los Alamos Report LA-1940, 1940 (May 1955)

    Book  Google Scholar 

  37. Fermi, E., Pasta, J. R., and Ulam, S. M.:Collected Works of E. Fermi, Vol. 2, University of Chicago Press, 1965, pp. 978–988.

    Google Scholar 

  38. Darboux, G.: Leçons sur la Théorie des Surfaces (2nd edn.), Gauthier-Villars, Paris, 1915.

    Google Scholar 

  39. Matveev, V. B. and Salle, M. A.: Darboux Transformations and Solitons, Springer-Verlag, Berlin, 1991.

    MATH  Google Scholar 

  40. Darboux, G.: At the Oberwolfach Meeting, July 1993 (for example).

    Google Scholar 

  41. Painlevé, P.: Bull Soc. Math. France 28 (1900), 227

    Google Scholar 

  42. Painlevé, P.: Bull Soc. Math. France 28 (1900), 227; Comptes Rendus Acad. Sc. Paris 135 (1902), pp. 411

    MATH  Google Scholar 

  43. Ablowitz, M. J. and Clarkson, P. A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Math. Soc. Lecture Note Series, Vol. 149, Cambridge University Press, Cambridge, 1991, Chapter 7.

    Book  MATH  Google Scholar 

  44. Fuchs, R: Sur quelques équations différentielles linéaires du second ordre, Comptes Rendus Acad. Sc. Paris 141 (1905), 555–558.

    Google Scholar 

  45. See footnote of references in Ince [32].

    Google Scholar 

  46. Miura, R. M., Gardner, C. S., and Kruskal, M. D.: J. Math. Phys. 9 (1968), 1204.

    Article  MathSciNet  MATH  Google Scholar 

  47. Miura, R. M.: J. Math. Phys. 9 (1968), 1202.

    Article  MathSciNet  MATH  Google Scholar 

  48. Gel’fand, I. M. and Levitan, B. M.: Izv. Akad. Nauk. SSR, Ser. Mat. 15 (1951), 309

    MathSciNet  Google Scholar 

  49. Gel’fand, I. M. and Levitan, B. M.: English translation Amer. Math. Soc. Translations, Ser. 2, 1 (1955), 253

    MathSciNet  MATH  Google Scholar 

  50. The extension to -∞ > x > ∞ is due to V. A. Marchenko. Also see Chadan, K. and Sabatier, P. C: Inverse Problems in Quantum Scattering Theory, Texts and Monographs in Physics, Springer-Verlag, Berlin, Heidelberg, New York, 1977.

    Google Scholar 

  51. Kay, I.: Report No. EM-74, Courant Inst. of Mathematical Sciences, New York University, 1955.

    Google Scholar 

  52. Lax, P. D.: Comm. Pure Appl. Math. 21 (1968), 467.

    Article  MathSciNet  MATH  Google Scholar 

  53. Gel’fand, I. M. and Dikii, L.: Uspekhi Mat. Nauk 30 (1975), 67

    MathSciNet  Google Scholar 

  54. Gel’fand, I. M. and Dikii, L.: Russian Math. Surveys 30 (1975), 77

    Article  MathSciNet  MATH  Google Scholar 

  55. Gel’fand, I. M. and Dikii, L.:Funkt. Anal. Prilozh. 10 (1976), 18.

    MathSciNet  Google Scholar 

  56. Novikov, S. P.: Funkt. Anal. Prilozh. 8(3) (1974), 54–66.

    Google Scholar 

  57. Gardner, C. S.: J. Math. Phys. 12 (1971), 1548.

    Article  MATH  Google Scholar 

  58. Gross, David J. and Migdal, Alexander A.: Nuclear Physics B340 (1990), 332.

    MathSciNet  Google Scholar 

  59. Migdal, A. A.: Matrix models, in V. Bazhanov (ed.), Proc. 7th Physics Summer School in Statistical Mechanics and Field Theory, Australian National University, Canberra, January 1994, World Scientific, Singapore, 1995, to appear.

    Google Scholar 

  60. Zakharov, V. E. and Faddeev, L. D.: Funkt. Anal Prilozh. 5 (1971), 18

    Google Scholar 

  61. Zakharov, V. E. and Faddeev, L. D.:Funct. Anal. Appl. 5 (1971), 280.

    Article  Google Scholar 

  62. Baxter, Rodney, J.: Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982.

    MATH  Google Scholar 

  63. Bullough, R. K. and Timonen, J. T.: Quantum and classical integrable models and statistical mechanics, in V. V. Bazhanov (ed.), Proc. 7th Physics Summer School in Statistical Mechanics and Field Theory, Australian National University, Canberra, January 1994, World Scientific, Singapore, 1995, to appear.

    Google Scholar 

  64. Bullough, R. K. and Timonen, J.: in A. R. Bishop, V. L. Pokrovsky and V. Tognetti (eds), Microscopic Aspects of Nonlinearity in Condensed Matter, NATO ARW Series B: Physics, Vol. 264, Plenum, New York, 1991, pp. 263–280.

    Chapter  Google Scholar 

  65. Bullough, R. K., Chen, Yu-Zhong, and Timonen, J. T: Physica D68 (1993), 83.

    Google Scholar 

  66. Timonen, J. T., Stirland, M., Pilling, D. J., Cheng Yi, and Bullough, R. K.: Phys. Rev. Lett. 56 (1986), 2233.

    Article  MathSciNet  Google Scholar 

  67. Dingle, R. B. and Müller, H. J. W.: J. Reine und Angewandte Math. 211 (1962), 11.

    MATH  Google Scholar 

  68. Bullough, R. K., Chen, Y-Z., and Timonen, J. T.: in V. G. Bar’yakhtar, V. Chernousenko, N. S. Erokhin, A. G. Sitenko, and V. E. Zakharov (eds), Nonlinear World, Vol. 2, World Scientific, Singapore, 1990, pp. 1377–1422.

    Google Scholar 

  69. Timonen, J., Bullough, R. K., and Pilling, D. J.: Phys. Rev. B34 (1986), 6525.

    MathSciNet  Google Scholar 

  70. Bullough, R. K., Pilling, D. J., and Timonen, J. T: in M. Lakshmanan (ed.), Solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Heidelberg, 1988, pp. 250–281.

    Google Scholar 

  71. Korepin, V. E., Bogoliubov, N. M., and Iczersin, A. C.: Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, Cambridge, 1993 (and references therein).

    Book  MATH  Google Scholar 

  72. Sklyanin, E. K.: The quantum Toda chain, in N. Sanchez (ed.), Nonlinear Equations in Classical and Quantum Field Theory, Lecture Notes in Physics, Vol. 226, Springer-Verlag, Berlin, 1985, pp. 196–233.

    Chapter  Google Scholar 

  73. Zakharov, V. E. and Shabat, A. B.: Funct. Anal. Appl. 8 (1974), 226

    Article  MATH  Google Scholar 

  74. Zakharov, V. E. and Shabat, A. B.:Funct. Anal. Appl. 13 (1979), 166.

    MathSciNet  Google Scholar 

  75. Beales, R. and Coifman, R. R.: Physica D18 (1986), 242.

    Google Scholar 

  76. Manakov, S. V: Physica D3 (1981), 420.

    MathSciNet  Google Scholar 

  77. Ablowitz, M. J., Yaacov, D. Bar, and Fokas, A. S.: Stud. Appl. Math. 69 (1983), 135 (and references therein).

    MathSciNet  MATH  Google Scholar 

  78. Fokas, A. S., Its, A. R., and Kitaev, A. V: Commun. Math. Phys. 147 (1992), 395–430.

    Article  MathSciNet  MATH  Google Scholar 

  79. Polyakov, A. M.: Phys. Lett. B103 (1981), 207

    MathSciNet  Google Scholar 

  80. Polyakov, A. M.:Modern Phys. Lett. A2 (1987), 899.

    MathSciNet  Google Scholar 

  81. Migdal, A. A.: in D. J. Gross, T. Piran and S. Weinberg (eds), Two Dimensional Quantum Gravity and Random Surfaces, Jerusalem Winter School for Theoretical Physics, Vol. 8, World Scientific, Singapore, 1992, pp. 41–79 and other papers there.

    Google Scholar 

  82. Goddard, Peter and Olive, David: Int. J. Modern Physics A1(2) (1986), 320–325.

    MathSciNet  Google Scholar 

  83. David, F.: Mod. Phys. Lett. A5(13) (1990), 1019–1029.

    Google Scholar 

  84. Fukuma, M., Kawai, H., and Ryuichi Nakayama: Int. J. Modern Physics A6(8) (1991), 1385–1406.

    Article  Google Scholar 

  85. Dijkgraaf, R., Verlinde, H., and Verlinde, E.: Nuclear Phys. B348 (1991), 435–456.

    MathSciNet  Google Scholar 

  86. Alvarez-Gammé, Gomez, C, and Lacki, J.: Phys. Lett. B253 (1991), 56–62.

    Google Scholar 

  87. Gross, D. J.: String theory, in V. V. Bazhanov (ed.), Proc. 7th Physics Summer School in Statistical Mechanics and Field Theory, Australian National University, Canberra, January 1994, World Scientific, Singapore, 1995, to appear.

    Google Scholar 

  88. Jimbo Michio and Miwa Tetsuji: in G. M. d’Ariano, A. Montorsi and M. G. Rasetti (eds), Integrable Systems in Statistical Mechanics, World Scientific, Singapore, 1985, pp. 65–127.

    Google Scholar 

  89. Hirota, R.: Chapter 5 of Ref. [12], 1980.

    Google Scholar 

  90. Hirota, R.: Phys. Rev. Lett. 27 (1971), 1192.

    Article  MATH  Google Scholar 

  91. Caudrey, P. J., Gibbon, J. D., Eilbeck, J. C., and Bullough, R. K.: Phys. Rev. Lett. 30 (1973), 237.

    Article  Google Scholar 

  92. Caudrey, P. J., Eilbeck, J. C., and Gibbon, J. D.: J. Inst. Maths. Appl. 14 (1974), 375.

    Article  MathSciNet  Google Scholar 

  93. Aoyama, S. and Kodama, Y.: Phys. Lett. B278 (1992), 56–62.

    MathSciNet  Google Scholar 

  94. Aoyama, S. and Kodama, Y.: Phys. Lett. B295 (1992), 190–198.

    MathSciNet  Google Scholar 

  95. Cheng, Yi, Li, Yi-Shen and Bullough, R. K.: J. Phys. A: Math. Gen. 21 (1988), L443.

    Article  MATH  Google Scholar 

  96. Penrose, R.: Shadows of the Mind, Oxford University Press, Oxford, 1994

    Google Scholar 

  97. Penrose, R.: also Times Higher Educational Supplement, Times Supplements Ltd, London El 9XY, p. 15, Oct. 14, 1994.

    Google Scholar 

  98. Josephson, Brian: To err is mechanical, in Times Higher Educational Supplement, Times Supplements Ltd, London El 9XY, p. 23, Nov. 4, 1994.

    Google Scholar 

  99. Bullough, R. K. and Caudrey, P. J.: Optical solitons and their spin wave analogues in 3He, in L. Mandel and E. Wolf (eds), Coherence and Quantum Optics IV, Plenum, New York, 1978, pp. 767–780.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michiel Hazewinkel Hans W. Capel Eduard M. de Jager

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bullough, R.K., Caudrey, P.J. (1995). Solitons and the Korteweg—de Vries Equation: Integrable Systems in 1834–1995. In: Hazewinkel, M., Capel, H.W., de Jager, E.M. (eds) KdV ’95. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0017-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0017-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4011-2

  • Online ISBN: 978-94-011-0017-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics