Skip to main content

Abstract

A theorem is stated giving conditions under which the optimal allocation of a scarce resource between different tasks of uncertain characteristics is expressible by a priority index. When this can be done the problem is much simpler. The paper aims to give an overview of the kind of situations in which such a result does or does not hold, and the mathematical treatment is informal. Applications are described to priority queues, chemical research, search procedures, and the two-armed bandit problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aczel: The effect of introducing priorities. Operations Research 8 (1960), 730–733.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Avi-Itzkak, I. Brosh, P. Naor: On discretionary priority queueing. Z. für Angewandte Mathematik und Mechanik 44 (1964), 235–242.

    Article  Google Scholar 

  3. R. E. Bellman: A problem in the sequential design of experiments. Sankhya 16 (1956). 221–229.

    MathSciNet  MATH  Google Scholar 

  4. R. E. Bellman: Dynamic Programming. Oxford University Press, London 1957.

    MATH  Google Scholar 

  5. E. O. Bronstein: On multiple level service with one server. Tech. Kibernetika (1969), 5, 59–64.

    MathSciNet  Google Scholar 

  6. E. O. Bronstein, E. B. Veklerov: On one type of service discipline. In: Mass service in information transmission systems. Nauka, Moscow 1969, 54–59.

    Google Scholar 

  7. Y. S. Chow, H. Robbins, D. Siegmund: Great expectations. Houghton Mifflin, Geneva, 1971.

    MATH  Google Scholar 

  8. D. R. Cox, W. L. Smith: Queues. Methuen, London 1961.

    Google Scholar 

  9. J. C. Gittins: Optimal resource allocation in chemical research. Advances in Applied Probability 1 (1969), 238–270.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. C. Gittins: How many eggs in a basket. R & D Management 3 (1973), 2, 73–81.

    MathSciNet  Google Scholar 

  11. J. C. Gittins, D. M. Jones: A dynamic allocation index for the sequential design of experiments. Progress in Statistics (editor J. Gani). North Holland, Amsterodam, 1974, 241 – 266.

    Google Scholar 

  12. K. D. Glazebrook: Stochastic Scheduling, Ph.D. disertation, Cambridge University Engineering Department 1976.

    Google Scholar 

  13. H. Greenberg: An algorithm for the computation of knapsack functions. J. Math. Analysis and its Applications 26 (1969).

    Google Scholar 

  14. A. Hordijk: Dynamic programming and Markov potential theory. Math. Centrum, Amsterdam 1974.

    MATH  Google Scholar 

  15. R. A. Howard: Dynamic programming and Markov processes. Wiley, New York 1960.

    MATH  Google Scholar 

  16. N. K. Jaiswal: Priority queues. Academic Press, London 1968.

    MATH  Google Scholar 

  17. D. M. Jones: A sequential method for industrial chemical research. M. Sc. thesis, University College of Wales, Aberystwyth 1970.

    Google Scholar 

  18. P. Nash: Optimal allocation of resources between research projects, Ph. D. thesis, Cambridge University, England 1973.

    Google Scholar 

  19. P. Nash, J. C. Gittins: A Hamiltonian approach to optimal stochastic resource allocation. Adrances in Applied Probability 9 (1977).

    Google Scholar 

  20. V. V. Rykov, E. Y. Lemberg: On optimal dynamic priority systems for mass service. Tech. Kibernetika (1967), 2, 25–34.

    Google Scholar 

  21. L. J. Savage: The Foundations of Statistics. Wiley, New York 1954.

    MATH  Google Scholar 

  22. R. Schlaifer: Analysis of decisions under uncertainty. McGraw Hill, New York 1967.

    Google Scholar 

  23. L. E. Schrage: A proof of the optimality of the shortest remaining processing time discipline. Operations Research 16 (1968), 687–689.

    Article  MATH  Google Scholar 

  24. K. C. Sevcik: The use of service time distributions in scheduling. Technical report CSRG-14 University of Toronto 1972.

    Google Scholar 

  25. A. Simonovits: Direct comparison of different priority queueing disciplines. Studia Scientiarum Math. Hungarica (to appear).

    Google Scholar 

  26. J. von Neumann, O. Morgenstern: Theory of games and economic behaviour. Second edition. Priceton University Press, Oxford 1953.

    Google Scholar 

  27. S. J. Yakowitz: Mathematics of adaptive control processes. Elsevier, New York 1969.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Kožešnik

Rights and permissions

Reprints and permissions

Copyright information

© 1977 ACADEMIA, Publishing House of the Czechoslovak Academy of Sciences, Prague

About this chapter

Cite this chapter

Gittins, J., Nash, P. (1977). Scheduling, Queues and Dynamic Allocation Indices. In: Kožešnik, J. (eds) Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes and of the 1974 European Meeting of Statisticians. Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes and of the 1974 European Meeting of Statisticians, vol 7A. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9910-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9910-3_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9912-7

  • Online ISBN: 978-94-010-9910-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics