Advertisement

Lattice Gauge Theory, Orthogonal Polynomials and q-Hypergeometric Functions

  • George E. Andrews
  • Enrico Onofri
Part of the Mathematics and Its Applications book series (MAIA, volume 18)

Abstract

A simple closed form for a particular instance of Wilson’s loop variables is derived both via group theory and via q-hypergeometric series. Several facets of these diverse approches are explored.

Keywords

Wilson Loop Orthogonal Polynomial Heat Kernel Lattice Gauge Theory Basic Hypergeometric Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, G.E.: The Theory of Partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, G.C.Rota ed., Addison-Wesley, Reading, 1976.Google Scholar
  2. 2.
    Andrews, G.E. and Askey, R.: Enumeration of Partitions: The role of Eulerian series and q-orthogonal polynomials, Higher Combinatorics, M. Aigner ed., D. Reidel, Dordrecht, Boston, 1977, pp. 3–26.Google Scholar
  3. 3.
    Andrews, G.E. and Askey, R.: Some basic hypergeometric analogues of the classical polynomials and applications, (to appear).Google Scholar
  4. 4.
    Askey, R. and Wilson, J.: A set of orthogonalpolynomials that generalize the Racah coefficients or 6-j symbols, S.I.A.M. J. Math. Anal., 10 (1979), 1008–1016.MathSciNetzbMATHGoogle Scholar
  5. 5.
    Drouffe,J.M. and Itzykson, C.: Lattice Gauge Fields, Phys. Reports, 38c (1978), 133–175.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Goldschmidt, Y.Y.: 1/N expansion in two-dimensional lattice gauge theory, J.Math.Phys., 21 (1980), 1852–1850.CrossRefGoogle Scholar
  7. 7.
    Gross, D.J. and Witten, E.: Possible third order phase transition in the large-N lattice gauge theory, Phys.Rev. D21 (1980), 16–153.Google Scholar
  8. 8.
    Kogut, J.B.: An introduction to lattice gauge theory and spin systems, Rev.Mod.Phys., 51 (1979), 659–713.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Littlewood, D.E.: The Theory of Group Characters, Oxford University Press, London, 1990.Google Scholar
  10. 10.
    Makeenko, Yu.M. and Migdal, A.A.: Exact equation for the loop average in multicolor QCD, Phys.Letters, 88B (1979), 135–137.Google Scholar
  11. 11.
    Mehta, M.L.: Random Matrices, Academic Press, NewYork, 1967zbMATHGoogle Scholar
  12. 12.
    Migdal, A.A.: Recursion equations in gauge field theories, Sov.Phys.-J.E.T.P., 42 (3) (1976), 413–418.Google Scholar
  13. 13.
    Onofri, E.: SU(w) lattice gauge theory with Villain’s action, Nuovo Cimento 66A, (1981) 293–CrossRefGoogle Scholar
  14. 14.
    Osterwalder, K. and Seiler, E.: Gauge fileld theories on a lattice, Ann of Physics (N.Y.), 110 (1978), 440–471.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Robinson, G. deB.: Representation Theory of the Symmetric Group, University of Toronto Press, Toronto, 1961.zbMATHGoogle Scholar
  16. 16.
    Rossi, P.: A solution of Wilson’s loop equation in lattice QCD2, Phys.Letters, 92B (1980), 321–323.Google Scholar
  17. 17.
    Rossi, P.: Continuum QCD2 from a fixed-point lattice action, Ann. of Physic g (N.Y.), 132 (1981), U63–U81.Google Scholar
  18. 18.
    Sears, D.B.: On the transformation theory of basic hyper- geometric functions, Proc.London Math.Soc. (2), 53 (1951), 158–180.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Selberg, A.: Bemerkninger om et multipelt integral, Norsk Matematisk Tidsskrift, 26 (1944), 71–78.MathSciNetzbMATHGoogle Scholar
  20. 20.
    Slater, L. J.: Generalized Hypergeometric Functions, Cambridge University Press, London 1966.zbMATHGoogle Scholar
  21. 21.
    Szego, G.: Orthogonal Polynomials, Vol. 23, 3rd Ed., Amer. Math. Soc. Colloq. Pubi., Providence 1966.Google Scholar
  22. 22.
    Weyl, H.: Classical Groups, 2nd Ed., Princeton University Press, Princeton 1966.Google Scholar
  23. 23.
    Wilson, J.: Hypergeometric series recurrence relations and some new orthogonal functions, Ph.D. thesis, University of Wisconsin, Madison 1978.Google Scholar
  24. 24.
    Wilson, K.G.; Confinement of quarks, Phys. Rev., D10 (1974) 2445–2459.Google Scholar
  25. 25.
    Askey, R.: Collected Papers of Gabor Szego, Birkhauser Boston (1982).Google Scholar

Copyright information

© D. Reidel Publishing Company 1984

Authors and Affiliations

  • George E. Andrews
    • 1
    • 2
  • Enrico Onofri
    • 1
    • 2
  1. 1.The Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Instituto di FisicaUniversita’ di ParmaParmaItaly

Personalised recommendations