Skip to main content

Sliding, rolling, leaping and making sand waves

  • Chapter
  • 244 Accesses

Abstract

Have you ever stood by a flooded mountain stream? Pebbles and cobbles are probably being audibly carried over the bed. From the evidence of their frequent collisions amongst themselves and with debris stationary on the bed, these stones must lie in dense array close to the stream bottom, to form what is called the bedload. However, this load is most unlikely to be visible, on account of the turbidity of the water. The smaller and more uniformly dispersed particles which make the current turbid are evidently being transported in a different way than the stones keeping close to the bed. They constitute the suspended load of the stream (Ch. 7).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Readings

  • Abbott, J. E. and J. R. D. Francis 1977. Saltation and suspension trajectories of solid grains in water streams. Phil. Trans. R. Soc. Lond. A 284 225–54.

    Google Scholar 

  • Ackers, P. and W. R. White 1973. Sediment transport: a new approach and analysis. J. Hydraul. Div. Am. Soc. Civ. Engrs 99, 2041–60.

    Google Scholar 

  • Allen, J. R. L. 1965. Sedimentation in the lee of small underwater sand waves: an experimental study. J. Geol. 73, 95–116.

    Article  Google Scholar 

  • Allen, J. R. L. 1968. Current ripples. Amsterdam: North-Holland.

    Google Scholar 

  • Allen, J. R. L. 1982. Sedimentary structures, Vol. I. Amsterdam: Elsevier.

    Google Scholar 

  • Allen, J. R. L. 1983. River bedforms: progress and problems. Spec. Publn Int. Assoc. Sedimentologists, no. 6, 19–33.

    Google Scholar 

  • Ashley, G. M., J. B. Southard and J. C. Boothroyd 1982. Deposition of climbing-ripple beds: a flume simulation. Sedimentology 29, 67–79.

    Article  Google Scholar 

  • Bagnold, R A. 1954. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian liquid under shear. Proc. R. Soc. Lond. A 225 49–63.

    Google Scholar 

  • Bagnold, R. A. 1955. Some flume experiments on large grains but little denser than the transporting fluid, and their implications. Proc. Instn Civ. Engrs 4, 174–205.

    Article  Google Scholar 

  • Bagnold, R. A. 1966. An approach to the sediment transport problem from general physics. Prof. Pap. US Geol. Surv., no. 422-I.

    Google Scholar 

  • Bridge, J. S. 1981a. A discussion of Bagnold’s (1956) bedload transport theory in relation to recent developments in bedload modelling. Earth Surf. Processes Landforms 6, 187–90.

    Article  Google Scholar 

  • Bridge, J. S. 1981b. Bed shear stress over subaqueous dunes, and the transition to upper-stage plane beds. Sedimentology 28, 33–6.

    Article  Google Scholar 

  • Chepil, W. S. 1958. The use of evenly spaced hemispheres to evaluate aerodynamic forces on soil surfaces. Trans. Am. Geophys. Union 39, 397–404.

    Google Scholar 

  • Chepil, W. S. 1961. The use of spheres to measure lift and drag on wind-eroded soil grains. Proc. Soil Soc. Am. 25, 343–5.

    Article  Google Scholar 

  • Corrsin, S. and A. K. Kistler 1955. Free-stream boundaries of turbulent flow. Rep. Nat. Adv. Coun. Aeron., no. 1244.

    Google Scholar 

  • Costello, W. R. and J. B. Southard 1981. Flume experiments on lower-flow-regime bed forms in coarse sand. J. Sed. Petrol. 5, 849–65.

    Google Scholar 

  • Falco, R. E. 1977. Coherent motions in the outer regions of turbulent boundary layers. Phys. Fluids 20 (10, II), 5124–32.

    Article  Google Scholar 

  • Gordon, R., J. B. Carmichael and F. J. Isackson 1972. Saltation of plastic balls in a `one-dimensional’ flume. Water Resources Res. 8, 444–59.

    Article  Google Scholar 

  • Graf, W. H. 1971. Hydraulics of sediment transport. New York: McGraw-Hill.

    Google Scholar 

  • Hammond, F. D. C. and A. D. Heathershaw 1981. A wave theory for sandwaves in shelf seas. Nature 293, 208–10.

    Article  Google Scholar 

  • Hardisty, J. 1983. An assessment and calibration of formulations for Bagnold’s bedload equation. J. Sed. Petrol. 53, 1007–10.

    Google Scholar 

  • Hill, H. M., V. S. Srinivasan and T. E. Unny 1969. Instability of flat bed in alluvial channels. J. Hydraul. Div. Am. Soc. Civ. Engrs 95, 1545–58.

    Google Scholar 

  • Hunter, R. E. 1977. Basic types of stratification in small eolian dunes. Sedimentology 24, 361–87.

    Article  Google Scholar 

  • Jackson, R. G. 1976. Sedimentological and fluid-dynamic implications of the turbulent bursting phenomenon in geophysical flows. J. Fluid Mech. 77, 531–60.

    Article  Google Scholar 

  • Jopling, A. V. and D. L. Forbes 1979. Flume study of silt transportation and deposition Geogr. Annlr A 61, 67–85. Kennedy, J. F. 1969. The formation of sediment ripples, dunes and antidunes. Annu. Rev. Fluid Mech. 1,147–68.

    Google Scholar 

  • Mantz, P. A. 1977. Incipient transport of fine grains and flakes by fluids–extended Shields diagram. J. Hydraul. Div. Am. Soc. Civ. Engrs 103, 601–15.

    Google Scholar 

  • Mantz, P. A. 1983. Semi-empirical correlations for fine and

    Google Scholar 

  • coarse cohesionless sediment transport. Proc. Instn. Civ. Engrs (2) 75, 1–33.

    Google Scholar 

  • Miller, M. C., I. N. McCave and P. D. Komar 1977. Threshold of sediment motion under unidirectional currents. Sedimentology 24, 507–27.

    Article  Google Scholar 

  • Milne-Thomson, L. M. 1962. Theoretical hydrodynamics, 2nd edn. London: Macmillan.

    Google Scholar 

  • Richards, K. J. 1980. The formation of ripples and dunes on an erodible bed. J. Fluid Mech. 99, 597–618.

    Article  Google Scholar 

  • Savage, S. B. 1979. Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 92, 53–96. Savage, S. B. and D. J. Jeffrey 1981. The stress tensor in granular flow at high shear rates. J. Fluid Mech. 110, 255–72.

    Google Scholar 

  • Savage, S. B. and S. McKeown 1983. Shear stresses developed during rapid shear of concentrated suspensions of large spherical particles between concentric cylinders. J. Fluid Mech. 127, 453–72.

    Article  Google Scholar 

  • Simons, D. B., E. V. Richardson and C. F. Nordin 1965.

    Google Scholar 

  • Sedimentary structures generated by flow in alluvial channels. Spec. Publn Soc. Econ. Palaeont. Mineral., no. 12, 34–52.

    Google Scholar 

  • Southard, J. B. 1971. Representation of bed configurations in depth-velocity-size diagrams. J. Sed. Petrol. 41, 903–15.

    Google Scholar 

  • Southard, J. B. and J. R. Dingier 1971. Flume study of ripple propagation behind mounds on flat beds. Sedimentology 16, 251–63.

    Google Scholar 

  • Thomas, A. S. W. and M. K. Bull 1983. On the role of wall-pressure fluctuations in deterministic motions in the turbulent boundary layer. J. Fluid Mech. 128, 283–322.

    Article  Google Scholar 

  • Ueda, H. and J. O. Hinze 1975. Fine-structure turbulence in the wall region of a turbulent boundary layer. J. Fluid Mech. 67, 125–43.

    Article  Google Scholar 

  • White, B. R. and J. C. Schulz 1977. Magnus effect in saltation. J. Fluid Mech. 81, 497–512.

    Article  Google Scholar 

  • Williams, P. B. and P. H. Kemp 1971. Initiation of ripples on flat sediment beds. J. Hydraul. Div. Am. Soc. Civ. Engrs 97, 505–22.

    Google Scholar 

  • Yalin, M. S. 1972. Mechanics of sediment transport. Oxford: Pergamon.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 J.R.L. Allen

About this chapter

Cite this chapter

Allen, J.R.L. (1985). Sliding, rolling, leaping and making sand waves. In: Principles of Physical Sedimentology. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9683-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9683-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9685-0

  • Online ISBN: 978-94-010-9683-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics