Skip to main content
  • 242 Accesses

Abstract

The preceding chapters may have conveyed the impression that we need refer only to unidirectional currents in order to give a physical account of sedimentary phenomena. We must emphasize that there is another important class of naturally occurring flows, characterized by rhythmical changes of speed combined with reversals of flow direction. These are the oscillatory currents associated with tides and with wind-generated surface waves. It is not immediately obvious that tides and wind waves belong in the same general class, but it turns out, as we shall see, that the tide can be analysed exactly as a type of wave. In addition to requiring some understanding of the origins of wind waves and tides, we shall in particular want to know what the currents due to them are like, what factors control these currents and the sediment transport they promote, and what bed-forms are adjusted to tidal and wave regimes. Some insight into these questions can be gained from simple experiments, from which it will become apparent that oscillatory flows can be much more complicated than unidirectional ones. But perhaps that is just part of their fascination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Readings

  • Aigner, T. and H.-E. Reineck, 1982. Proximality trends in modern storm sands from the Helgoland Bight (North Sea) and their implications for basin analysis. Senckenbergiana Maritima 14, 183–215.

    Google Scholar 

  • Allen, J. R. L. 1979. A model for the interpretation of wave ripple-marks using their wavelength, textural composition, and shape. J. Geol. Soc. Lond. 136, 673–82.

    Article  Google Scholar 

  • Allen, J. R. L. 1982a. Sedimentary structures, Vol. I. Amsterdam: Elsevier.

    Google Scholar 

  • Allen, J. R. L. 1982b. Mud drapes in sand-wave deposits: a physical model with application to the Folkestone Beds (early Cretaceous, southeast England). Phil. Trans. R. Soc. Lond. A 306, 291–345.

    Article  Google Scholar 

  • Allen, P. A. 1981a. Wave-generated structures in the Devonian lacustrine sediments of SE Shetland, and ancient wave conditions. Sedimentology 28, 369–79.

    Article  Google Scholar 

  • Allen, P. A. 1981b. Some guidelines in reconstructing ancient sea conditions from wave ripple marks. Marine Geol. 43, M59–67.

    Article  Google Scholar 

  • Allen, P. A. and P. Homewood, 1984. Evolution and mechanics of a Miocene tidal sand wave. Sedimentology 31, 63–81.

    Article  Google Scholar 

  • Bagnold, R. A. 1946. Motion of waves in shallow water. Interaction between waves and sand bottoms. Proc. R. Soc. Lond. A 187, 1–16.

    Article  Google Scholar 

  • Barnett, T. P. and J. C. Wilkerson, 1967. On the generation of ocean wind waves as inferred from airborne radar measurements of fetch-limited spectra. J. Marine Res. 25, 292–321.

    Google Scholar 

  • Boggs, S. 1974. Sand-wave fields in Taiwan Strait. Geology 2, 251–3.

    Article  Google Scholar 

  • Bouma, A. H., M. L. Rappeport, R. C. Orlando, and M. A. Hampton, 1980. Identification of bedforms in Lower Cook Inlet, Alaska. Sed. Geol. 26, 157–77.

    Article  Google Scholar 

  • Brenchley, P. J., G. Newall, and I. G. Stanistreet, 1979. A storm surge origin for sandstone beds in an epicontinental platform sequence, Ordovician, Norway. Sed. Geol. 22, 185–217.

    Article  Google Scholar 

  • Buller, A. T. and S. O. Johnson, 1982. Storm-influenced marine sandstones in the Ordovician Lower Havin Group, Nord-Trdndelag. Norsk Geol. Tidsskr. 62, 211–17.

    Google Scholar 

  • Carter, D. J. T. 1982. Prediction of wave height and period for a constant wind velocity using the JONSWAP results. Ocean Engng 9, 17–33.

    Article  Google Scholar 

  • Collins, J. I. 1963. Inception of turbulence at the bed under periodic gravity waves. J. Geophys. Res. 68, 6007–14.

    Google Scholar 

  • Conolly, J. R. 1969. Western Tasman Sea floor. N. Z. J. Geol. Geophys. 12, 310–42.

    Article  Google Scholar 

  • D’Anglejan, B. F. 1971. Submarine sand dunes in the St Lawrence Estuary. Can. J. Earth Sci. 8, 1480–6.

    Article  Google Scholar 

  • Darbyshire, M. and L. Draper, 1963. Forecasting wind-generated sea waves. Engineering 5 April, 482–4.

    Google Scholar 

  • Darwin, G. H. 1884. On the formation of ripple-marks. Proc. R. Soc. Lond. 36, 18–43.

    Google Scholar 

  • Defant, A. 1958. Ebb and flow. Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Dingler, J. R. 1979. The threshold of grain motion under oscillatory flow in a laboratory wave channel. J. Sed. Petrol. 49, 287–94.

    Google Scholar 

  • Doodson, A. T. and H. D. Warburg, 1941. Admiralty manual of tides. London: HMSO.

    Google Scholar 

  • Dott, R. H. and J. Bourgeois, 1982. Hummocky stratification: significance of its variable bedding sequences. Bull. Geol. Soc. Am. 93, 663–80.

    Article  Google Scholar 

  • Field, M. E., H. C. Nelson, D. A. Cacchione and D. E. Drake 1981. Sand waves on an epicontinental shelf: northern Bering Sea. Marine Geol. 42, 233–58.

    Article  Google Scholar 

  • Frost, B. A. 1966. The relation between Beaufort Force, wind speed and wave height. Sci. Pap. Meteorol. Office, no. 25.

    Google Scholar 

  • Greenwood, B. and R. G. D. Davidson-Arnott, 1979. Sedimentation and equilibrium in wave-formed bars: a review and case study. Can. J. Earth Sci. 16, 312–32.

    Article  Google Scholar 

  • Hamilton, D., J. H. Sommerville and P. N. Stanford, 1980. Bottom currents and shelf sediments, southwest of Britain. Sed. Geol. 26, 115–38.

    Article  Google Scholar 

  • Hine, A. C. 1977. Lily Bank, Bahamas: history of an active oolite sand shoal. J. Sed. Petrol. 47, 1554–81.

    Google Scholar 

  • Inman, D. L. 1957. Wave generated ripples in nearshore sands. Tech. Mem. US Beach Erosion Board, no. 100

    Google Scholar 

  • Jordan, G. F. 1962. Large submarine sand waves. Science 136, 839–48.

    Article  Google Scholar 

  • Kaneko, A. 1980. The wavelength of oscillation sand ripples. Rep. Res. Inst. Appl. Mech. Kyushu Univ. 28, 57–71.

    Google Scholar 

  • Kaneko, A. and H. Honji, 1979. Double structure of steady streaming in the oscillatory viscous flow over a wavy wall. J. Fluid Mech. 93, 727–36.

    Article  Google Scholar 

  • Keller, G. H. and A. F. Richards, 1967. Sediments of the Malacca Strait, southeast Asia. J. Sed. Petrol. 37, 102–27.

    Google Scholar 

  • Kinsman, B. 1965. Wind waves. Englewood Cliffs: Prentice- Hall.

    Google Scholar 

  • Komar, P. D. 1974. Oscillatory ripple marks and the evaluation of ancient wave conditions and environments. J. Sed. Petrol. 44, 169–80.

    Google Scholar 

  • Komar, P. D. and M. C. Miller, 1973. The threshold of sediment motion under oscillatory water waves. J. Sed. Petrol. 43, 1101–10.

    Google Scholar 

  • Komar, P. D. and M. C. Miller, 1975. On the comparison between the threshold of sediment motion under waves and unidirectional currents with a discussion of the practical evaluation of the threshold. J. Sed. Petrol. 45, 362–7.

    Google Scholar 

  • Langhorne, D. N. 1973. A sandwave field in the outer Thames Estuary. Marine Geol. 14, 129–43.

    Article  Google Scholar 

  • Langhorne, D. N. 1982. A study of the dynamics of a marine sandwave. Sedimentology 29, 571–94.

    Article  Google Scholar 

  • Lau, J. and B. Travis, 1973. Slowly varying Stokes waves and submarine longshore bars. J. Geophys. Res. 78, 4489–97. Longuet-Higgins, M. S. 1958. The mechanics of the boundary-layer near the bottom in a progressive wave, an appendix to the paper by Russell and Osorio, 1958. Proc. 6th Conf. Coastal Engng 184–93.

    Google Scholar 

  • Longuet-Higgins, M. S. 1981. Oscillating flow over steep sand ripples. J. Fluid Mech. 107, 1–35.

    Article  Google Scholar 

  • Ludwick, J. C. 1972. Migration of tidal sand waves in Chesapeake Bay entrance. In Shelf sediment transport: processes and patterns. D. J. P. Swift, D. B. Duane and H. O. Pilkey (eds), 377–410. Stroudsburg: Dowden, Hutchinson and Ross.

    Google Scholar 

  • McCave, I. N. 1971. Sand waves in the North Sea off the coast of Holland. Marine Geol. 10, 199–225.

    Article  Google Scholar 

  • McKee, E. D. 1938. Original structures in the Colorado River flood deposit of the Grand Canyon. J. Sed. Petrol. 8, 77–83.

    Google Scholar 

  • Mann, R. G., D. J. P. Swift and R. Perry, 1981. Size classes of flow-transverse bedforms in a subtidal environment, Nantucket Shoals, North American Atlantic shelf. Geo-Marine Lett. 1, 39–43.

    Article  Google Scholar 

  • Miller, M. C. and P. D. Komar, 1980. Oscillation sand ripples generated by laboratory experiments. J. Sed. Petrol. 50, 173–82.

    Google Scholar 

  • Moore, P. S. 1982. Ripple-mark analysis of a fine-grained epeiric-sea deposit (Cambrian, South Australia). J. Geol. Soc. Aust. 27, 71–81.

    Article  Google Scholar 

  • Morison, J. R. and R. C. Crooke, 1953. The mechanics of deep water, shallow water, and breaking waves. Tech. Mem. US Beach Erosion Board, no. 40.

    Google Scholar 

  • Newton, R. S. 1968. Internal structures of wave-formed ripple marks in the nearshore zone. Sedimentology 11, 275–92.

    Article  Google Scholar 

  • Newton, R. S., E. Seibold and F. Werner, 1973. Facies distribution patterns on the Spanish Saharan continental shelf mapped with side-scan sonar. Ergebnisse ‘Meteor’ Forsch. C 16, 55–77.

    Google Scholar 

  • Nio, S. D., C. Siegnethaler and C. S. Yang, 1983. Megaripple cross-bedding as a tool for the reconstruction of the palaeohydraulics in. a Holocene subtidal environment, S.W. Netherlands. Geol. Mijnb. 62, 499–510.

    Google Scholar 

  • Phillips, O. M. 1977. The dynamics of the upper ocean. Cambridge: Cambridge University Press.

    Google Scholar 

  • Pingree, R. D. and D. K. Griffiths, 1979. Sand transport paths around the British Isles resulting from MZ and M4 tidal interactions. J. Marine Biol. Assoc. UK. 59, 497–513.

    Article  Google Scholar 

  • Rance, P. J. and N. F. Warren, 1969. The threshold of movement of coarse material in oscillatory flow. Proc. 11th Conf. Coastal Engng. Vol. 1. 487–91.

    Google Scholar 

  • Reineck, H.-E. 1963. Sedimentgefüge im Bereich der südlichen Nordsee. Abh. Senck. Naturf. Ges., no. 505.

    Google Scholar 

  • Reineck, H.-E. and F. Wunderlich, 1968. Zur Unterscheidung von asymmetrischen Oszillationsrippeln und Strömungsrippeln. Senckenbergiana Lethaea 49, 321–45.

    Google Scholar 

  • Sundquist, B. 1982. Palaeobathymetric interpretation of wave ripple-marks in a Ludlovian grainstone of Gotland. Geol. För. Stockh. Förh. 104, 157–66.

    Article  Google Scholar 

  • Terwindt, J. H. J. 1981. Origin and sequences of sedimentary structures in inshore mesotidal deposits of the North Sea. Spec. Publn. Int. Assoc. Sed., no. 5, 4–26.

    Google Scholar 

  • Thornton, E. B. and R. F. Krapohl, 1974. Water particle velocities measured under ocean waves. J. Geophys. Res. 79, 847–52.

    Article  Google Scholar 

  • Visser, M. J. 1980. Neap—spring cycles reflected in Holocene subtidal large-scale bedform deposits: a preliminary note. Geology 8, 543–6.

    Article  Google Scholar 

  • Wallet, A. and F. Ruellan, 1950. Trajectories of particles within a partial clapotis. Houille Blanche 5, 483–9.

    Google Scholar 

  • Wiegel, R. L. 1964. Oceanographical engineering. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Wright, M. E. and R. G. Walker, 1981. Cardium formation (U. Cretaceous) at Seebe, Alberta — storm-transported sandstones and conglomerates in shallow marine depositional environments below fair-weather base. Can. J. Earth Sci. 18, 795–809.

    Google Scholar 

  • Yorath, C. J., B. D. Bornhold and R. E. Thomson, 1979. Oscillation ripples on the northeast Pacific continental shelf. Marine Geol. 31, 45–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 J.R.L. Allen

About this chapter

Cite this chapter

Allen, J.R.L. (1985). To and fro. In: Principles of Physical Sedimentology. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9683-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9683-6_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9685-0

  • Online ISBN: 978-94-010-9683-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics