Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 90))

  • 415 Accesses

Abstract

As shown so far, the acid-base interactions significantly affect polymer formation when adding solid acids or bases. Besides, those interactions affect also polymer and composite characteristics. Regarding the character of the occurring acid-base interactions, their effect may be either positive or negative, i.e. they may either improve, or make the properties of the composite material worse. The effect of those interactions depends on the composition of each particular system — acidic or basic filler added to basic or acidic monomer, oligomer or polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lipatova T.E., Sheinina L.S., Vladimirova L.Yu., Maslak Yu.V. Features of aerosil effect on structure and properties of filled network polyurethanes. Vysokomol. Soedin. 1987; 4: 747–52 (In Russian).

    Google Scholar 

  2. Manson J.A., Marmo M., Williams J.T. Acid-base interactions and mechanical behaviour in filled polymers. Org. Coat. Plast. Chem. 1980; 42: 190–94.

    Google Scholar 

  3. Manson J.A. Interfacial effects in composites. Pure and Appl. Chem. 1985; 57: 1667–78.

    CAS  Google Scholar 

  4. Valenti B., Bianchi E., Greppi G., Tealdi A., Cifferi A. Bulk properties of synthetic polymer-inorganic salt systems. Melting behaviour of salted poly(caproamide). J. Phys. Chem. 1973; 77: 388–95.

    Article  Google Scholar 

  5. Valenti B., Bianchi E., Tealdi A, Russo S., Cifferi A. Bulk properties of synthetic polymer-inorganic salt systems. IV. Role of the polymer substrate. Macromolecules 1976; 9: 117–22.

    Article  CAS  Google Scholar 

  6. La Mantia F.P., Aciemo D. Glass transition behavior of salted nylon 6. Colloid and Polymer Sci. 1981; 259: 693–96.

    Article  Google Scholar 

  7. Siegmann A., Baraam Z. Effect of metal halides on the glass transition temperature of nylon 6. Makromol. Chem. Rapid Commun. 1980; 1: 113–17.

    Article  CAS  Google Scholar 

  8. Cifferi A., Bianchi E., Marchese F., Tealdi A Differential scanning calorimétry of poly(caprolactam)/inorganic salt systems. Makromol. Chem. 1971; 150: 265–70 (In Russian).

    Google Scholar 

  9. Reimschuessel A.C., Kim Y. J. Stress-cracking of nylons induced by zink chloride solutions. Mater. Sci. 1978; 13: 243–52.

    CAS  Google Scholar 

  10. Acierno D., Bianchi E., Cifferi A., de Cindio B., Migliaresi C., Nicolais L. Bulk properties of synthetic polymer-inorganic salt systems. M. Flow behavior and glass transition of salted polycaproamide. J. Polym. Sci., Polyrn. Symp. 1976; 54: 259–69.

    CAS  Google Scholar 

  11. Votteler Ch., Hoffman V., Trafara G. Modifications of polyamide-6 and polyamide-4 intercalated with alkali halides. Makromol. Chem. 1984; 185: 1953–77.

    Article  CAS  Google Scholar 

  12. Reimschuessel H.K. Polymer-metal halide system. Colloid and Polym. Sci. 1982; 260: 842–50.

    CAS  Google Scholar 

  13. Cheshkov V.M., Natova M.M., Ashurov N.R., Usmanova M.M., Veksel’man A.A. Characteristics of polymerization-filled polycaprolactam. J. Appl. Polym. Sci. 1997; 64: 1255–58.

    Article  CAS  Google Scholar 

  14. Fichera A., Malta V., Marega C., Zannetti R. Temperature dependence of the polymorphous phases of nylon 6. Makromol. Chem. 1988; 189: 1561–67.

    Article  CAS  Google Scholar 

  15. Gurato G., Fichera A., Grandi F.Z., Zannetti R., Canal P. Crystallinity and polymorphysm of 6-polyamide. Makromol. Chem. 1975; 175: 953–75.

    Article  Google Scholar 

  16. Kobljakov A.I., Barteneva A.G. Effect of relaxation transition on the strength of Kapron fibers. Vysokomol. Soedin. 1986; A28: 785–89 (In Russian).

    Google Scholar 

  17. Kojima Y., Usuki A., Kawasumi M., Okada A., Karauchi T., Kamigaito O. Synthesis of nylon-6-clay hybrid by montmorillonite intercalated with s-caprolactam. J. Polym. Sci., Part A: Polym. Chem. 1993; 31: 983–86.

    Article  CAS  Google Scholar 

  18. Kojima Y., Usuki A., Kawasumi M., Okada A., Fukushina Y., Karauchi T., Kamigaito O. Mechanical properties of nylon-6-clay hybrid. J. Mater. Res. 1993; 8: 1185–89.

    Article  CAS  Google Scholar 

  19. Abdurazakov M., Gomza Yu.P., Petrenko S.D., Volkov V.N., Ashurov N.R., Shilov V.V., Lipatov Yu.S. Physicomechanical properties and structure of graphite-filled polycaproamide. Mekh. Kompoz. Mater. 1988; 2: 257–63 (In Russian).

    Google Scholar 

  20. Chao L.C., Chang E.-P. Interaction of anhydrous ferric chloride with nylon 6. J. Appl. Polym. Sci. 1981; 26: 603–10.

    Article  CAS  Google Scholar 

  21. Rao K.H., Forssberg K.S.E., Forsling W. Interfacial interactions and mechanical properties of mineral filled polymer composites: wollastonite in PMMA polymer matrix. Coll. and Surf. 1998; 133: 107–17.

    Article  Google Scholar 

  22. Mozzhukhin V.B., Sadova S.P., Fedoseev R.L., Rasmanik I.V. Effect of additives on the adhesion strength of vynil chloride-acrylic acid copolymer plastisol coatings. Vysokomol. Soedin. 1985; B27: 414–16 (In Russian).

    Google Scholar 

  23. Dunker A.K., John W.E., Rammon R., Fanner B., Johns S.J. Slightly bizzare protein chemistry: urea-formaldehyde resin from a biochemical perspective. J. Adhesion 1986; 19: 153–76.

    Article  CAS  Google Scholar 

  24. Rammon R., John W.E., Magnusson J., Dunker A.K. The chemical structure of OF resins. J. Adhesion 1986; 19: 115–35.

    Article  CAS  Google Scholar 

  25. Mayer, Beat, Urea-Formaldehyde Resins. Massachusetts: Addison-Wesley Publ. Co., 1979.

    Google Scholar 

  26. Pizzy, Antonio, Wood Adhesives: Chemistry and Technology. N. Y.: Marcell Dekker, 1983.

    Google Scholar 

  27. Roffael, Edmone, Formaldehydabgabe von Spanplatten and anderen Werkstoffen. Stuttgart: DRW, 1982.

    Google Scholar 

  28. Meyer B., Hermanns K. Formaldehyde release from urea-formaldehyde bonded wood products. J. Appl. Polym. Sci.: Appl. Polym. Symp. 1984; 40: 27–39.

    CAS  Google Scholar 

  29. Kreibich R.E. Exposure of glue lines to weather. J. Appl. Polym. Sci.: Appl. Polym. Symp. 1984; 40: 1–17.

    CAS  Google Scholar 

  30. Marutzky R., Dix B. Formaldehyde release of tannin-bonded particleboards. J. Appl. Polym. Sci.: Appl. Polym. Symp. 1984; 40: 49–57.

    CAS  Google Scholar 

  31. Brown S.K. Hydrolysis and durability of urea-formaldehyde foam insulation. Polym. Degradation and Stability 1990; 27: 121–43.

    Article  CAS  Google Scholar 

  32. Cheshkov VM, Zahariev G, Natova MM. On some probes of application of amino resins in wood working industry, Proceedings of the X Symposium on Adhesives in Wood-Working Industry; 1991 September 11–13; Zvolen, 1991 (In Russian).

    Google Scholar 

  33. Simeonov J., Tcheshkov V., Zahariev G. Verfahren zur Hartung von Karbamidformaldehydharz. BRDPat., No. 2650265, 1979.

    Google Scholar 

  34. Simeonov J., Tcheshkov V., Zahariev G. Improvements in or relating to the curing of aminoplastic plastic materials. UK Pat., No. 1499285, 1978.

    Google Scholar 

  35. Simeonov J., Tcheshkov V., Zahariev G. Method of obtaining composite materials and products, particularly for construction and building purposes, based on urea-formaldehyde resins by addition of phosphogypsum. US Pat. No. 4 248 760.

    Google Scholar 

  36. Cheshkov V., Zahariev G., Rangelov V., Rusev D. Building elements from wooden particles. Proceedings of XI Symposium on Adhesives in Wood-Working Industry; 1993 September 8–9; Zvolen, 1993 (In Russian).

    Google Scholar 

  37. Simeonov J., Rangelov V., Tcheshkov V., Zahariev G., Ivanov V. Gemisch far Holzflächen. DDR Pat. No. 272577, 1989.

    Google Scholar 

  38. Simeonov J., Rangelov V., Tcheshkov V., Zahariev G., Ivanov V. Anyagösszetétel préselt lapoknoz. Hung. Pat.No.192158, 1987.

    Google Scholar 

  39. Simeonov J., Rangelov V., Tcheshkov V., Zahariev G., Ivanov V. Smes k vyrobe drevitÿeh desek. CSR Pat. No. 251 664, 1988.

    Google Scholar 

  40. Filyanov E.M. Influence of filler on glass-transition temperature of epoxy polymer and its relations with the properties of filled polymer. Vysokomol. Soedin. 1978; 20A: 1845–48 (In Russian).

    Google Scholar 

  41. Mikhailova Z.V., Pugachevskaya N.F., Kovriga V.V. “Filled composite on the basis of unsaturated polyesters.” In Chemistry and Technology of High Molecular Compaunds, A. Askadskii, ed. vol. 14, Moscow: VINTIT, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ivanov, Y., Cheshkov, V., Natova, M. (2001). Properties of Polymer Composites with Acidic or Basic Fillers. In: Polymer Composite Materials — Interface Phenomena & Processes. Solid Mechanics and Its Applications, vol 90. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9664-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9664-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0386-8

  • Online ISBN: 978-94-010-9664-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics