Skip to main content

Formation of Polymer Composite Materials in the Presence of Solid Acids and Bases

  • Chapter
  • 396 Accesses

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 90))

Abstract

As noted in the previous chapters, the formation of polymers in the presence of acidic and basic fillers is determined by the adsorption character of the acid-base interaction within the compositions. When a filler — a solid acid or base, is introduced into a ready prepared polymer (basic or acidic, respectively), the polymer structure and properties may vary as a result of the adsorption interaction. These fillers affect the polymer more significantly when they are introduced during the stage of polymer formation, i.e. before the accomplishment of polymerization or polycondensation. Thus, they modify not only polymer structure and properties but also kinetics, thermodynamics and polymerization mechanism. The numerous published data show that solid acids and bases behave as effective catalysts of polymerization and polycondensation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kurokawa N., Tabata M., Solana J. Polymerization of ethylene and propylene initiated by milled alumina powder. J. Appl. Polym. Sci. 1980; 25: 1209–16.

    Article  CAS  Google Scholar 

  2. Vuillume G., Spitz R., Revillon A., Guyot A. Supported chromium oxide catalysts for olefins polymerization. X. Propylene polymerization-activity measurements at low pressure. J. Macromol. Sci. 1974; A8: 1117–28.

    Article  Google Scholar 

  3. Spitz R., Revillon A., Guyot A. Supported chromium oxide catalysts for olefin polymerization. XI. Comparison between ethylene and propylene polymerization. J. Macromol. Sci. 1974; A8: 1129–36.

    Article  Google Scholar 

  4. Friedlander H.Z. Organized polymerization. I. Olefins on a clay surface. J. Polym. Sci. 1964; C4: 1291–301.

    Google Scholar 

  5. Take J., Ikeda M., Yoneda Y. Nature of catalytical active sites over solid acids. III. Relationships between acidic properties of silica-alumina and its catalytic activities for olefin polymerization. Bull. Chem. Soc. Jap. 1977; 50: 49–51.

    Article  CAS  Google Scholar 

  6. Fukano K., Kageyama E. Radiation-induced polymerization of styrene adsorbed on several inorganic substances. J. Polym. Sci.: Polym. Chem. Ed. 1975; 13: 1309–24.

    Article  CAS  Google Scholar 

  7. Fukano K., Kageyama E. Study of radiation-induced polymerization of vinyl monomers adsorbed on inorganic substances. VIII. Polymerization of styrene and methyl methacrylate adsorbed on aerosil. J. Polym. Sci.: Polym. Chem. Ed. 1976; 14: 2183–92.

    Article  CAS  Google Scholar 

  8. Arai M., Arai K., Saito S. Soapless emulsion polymerization of methyl methacrilate in water in the presence of calcium sulfite. J. Polym. Sci.: Polym. Chem. Ed. 1982; 20: 102–129.

    Google Scholar 

  9. Stay E., Bentur A., Kohn B.H. Polymeriztion of acrylamide in the presence of calcium sulfate dihydrate and calcium sulfate hemihydrate. J. Appl. Polym. Sci. 1992; 45: 2079–89.

    Article  Google Scholar 

  10. Stay E., Bentur A., Kohn B.H. Polymeriztion of acrylamide in the presence of calcium sulfate hemihydrate: compressive strength and microstructure of the composite. Adv. Chem. Res. 1991; 4: 57–60.

    Google Scholar 

  11. Theng B.K., Walker G.F. Interactions of clay minerals with organic monomers. Isr. J. Chem. 1970; 8: 417–24.

    CAS  Google Scholar 

  12. Solomon D.H., Swift J.D., Murphy A.J. The acidity of clay minerals in polymerization and related reactions. J. Macromol. Sci. 1971; A5: 587–601.

    Article  Google Scholar 

  13. Polushkin V.A., Diner V.A., Lokutsievskii V.A., Khan I.G. Study of products of styrene polymerization initiated by kaolinite. Vysokomol. Soedin. 1984; B26: 420–25 (In Russian).

    Google Scholar 

  14. Litvinenko M.L., Diner V.A., Polushkin V.A. Copolymerization of monomers adsorbed on kaolin. Vysokomol. Soedin. 1986; B28: 16–20 (In Russian).

    Google Scholar 

  15. Pavlov S.A., Bruk M.A. Radiation-induced polymerization of monomers on the solid surface in systems with strong adsorption bonding. Vysokomol. Soedin. 1987; A29: 118–24 (In Russian).

    Google Scholar 

  16. Natta G., Mazzanti G., Pregaglia G., Binaghi M. Crystalline polymers of dialkyl ketenes. Macromol. Chem. 1961; 44–46: 537–49.

    Google Scholar 

  17. Natta G., Mazzanti G., Pregaglia G., Binaghi M., Cambini M. Polymers of dimethylketene having essentially a polyacetal structure. Macromol. Chem. 1962; 51: 148–53.

    Article  CAS  Google Scholar 

  18. Cheshkov V., Natova M. Homogeneous-heterogeneous catalysis of the polycondensation process of amino resins. Proceedings of VI International Symposium on Relations between Homogeneous and Heterogeneous Catalysis; 1989 September 25–29; Piza, 1989.

    Google Scholar 

  19. Lipatova T.E., Sheinina L S On the effect of aerosil on the kinetics of formation of linear polyurethanes. Vysokomol. Soedin. 1976; B18: 44–7 (In Russian).

    Google Scholar 

  20. Lipatova T.E., Sheinina L.S., Vladimirova L.Yu., Maslak Yu.V. Effect of aerosil on structure and properties of filled network polyurethanes. Vysokomol. Soedin. 1987; A29: 747–52 (In Russian).

    Google Scholar 

  21. Faure M., Fraissard J., Imelik B. Etude des propertiétés superficielles de l’oxyde de magnesium. II. Polymerisation de l’oxide d’éthylene. Bull. Soc. Chim. France 1970; 89: 2828–33.

    Google Scholar 

  22. Mund S.L., Bruk M.A., Abkin A.D. Some characteristics of the radiation-initiated homo-and copolymerization of vinyl acetate and acrylonitrile in an adsorption layer on an aerosil surface. Vysokomol. Soedin. 1976; A18: 2631–38 (In Russian).

    Google Scholar 

  23. Morozova E.M., Eliseeva V.I., Travnikova L.A. Effect of monomer-active filler system structurization on thin layer polymerization. J. Polym. Sci.: Polym. Symp. 1973; 73–7.

    Google Scholar 

  24. Yamaguchi T., Tanaka H., Mustafa A.B., Ono T., Ito H., Itabashi O., Endo M., Ohuchi M., Saito L. Polymerization of MMA in the presence of various metal oxides, sands and slags. Chem. Ind. 1974; 15: 619–22.

    Google Scholar 

  25. Shaboldin V.I., Demishev V.N., Ionov Ju.A., Akatova S.P. Effect of mineral salts on the structure of liquid thiokol. Vysokomol. Soedin. 1982; A24: 1099–102 (In Russian).

    Google Scholar 

  26. Shaboldin V.I., Krashennikov A.I. Vulcanization of liquid carboxyl group-containing butadiene rubbers with transition metal salts. Vysokomol. Soedin. 1984; B26: 17–20 (In Russian).

    Google Scholar 

  27. Kruba L.E., Amfiteatrova T.A., Kozlov L.V. Effect of pigments on the flow and curing of thermosetting acrylic compositions. Lakokras. Mater. i ikh Primen. 1984; 14–16 (In Russian).

    Google Scholar 

  28. Kuznetsov G.K., Chirkova E.A. Effect of silicate fillers on the curing of polyester resins. Plast. Massy 1981; 20–22 (In Russian).

    Google Scholar 

  29. Tarasevich Yu.I., Rak V.C., Telichkun V.P. Study of the adsorption of amino acids on montmorillonite. Kolloidn. Zh. 1977; 39: 1190–94 (In Russian).

    CAS  Google Scholar 

  30. Kozlov L.V., Alekseev S.M. Effect of the titanium dioxide surface on the polymerization of methyl methacrylate. Lakokras. Mater. i ikh Primen. 1974; 12–14 (In Russian).

    Google Scholar 

  31. Moustafa AR, Radwan F.M., Aboul-wafa O., Erman A. Kinetics of the heterogeneous polymerization of methyl methacrylate catalized by unmodified and modified surface of the white sand of Sinai. Surf. Coat. Int. 1991; 74: 107–10.

    CAS  Google Scholar 

  32. Moustafa A.B., Badran A.S. Effect of cations and anions of some metal salts in the aqueous polymerization of methyl methacrylate. A.gew. Makromol. Chem. 1982; 103: 153–58.

    Article  CAS  Google Scholar 

  33. Talapatra S., Saha S.K., Chakravarti S. K., Guhaniyogi S.C. Aqueous polymerization of methyl methacrylate on hydrogen bentonite: effect of alcohols. Polym. Bull. 1983; 10: 2127.

    Article  Google Scholar 

  34. Diab M.A., El-Sonbati A.Z., Hilali A.S., Killa H.M., Ghoneim M.M. Polymer complexes–X. Polymerization of methyl methacrylate in the presence of some transition metal chlorides. Eur. Polym. J. 1990; 26: 1–3.

    Article  CAS  Google Scholar 

  35. Spasskaya R.L., Zil’berman E.N. Polymerization of caprolactam in the presence of lead acetate. Vysokomol. Soedin. 1985; B27: 247–50 (In Russian).

    Google Scholar 

  36. Gorbunova Ye.V., Deev Yu.S., Ryabov Ye.A. Autopolymerization of capro-and dodecalactam. Vysokomol. Soedin. 1980; A22: 2457–63 (In Russian).

    Google Scholar 

  37. Gorbunova Ye.V., Kazaryan L.G., Tsvetkov V.D., Azriel A.Ye., Deev Yu.S. Kinetic features of polymerization of capro-and dodecalactam in the presence of copper, vanadium, manganese, molibdenum and cobalt oxides. Vysokomol. Soedin. 1988; A30: 342–47 (In Russian).

    Google Scholar 

  38. Gorbunova Ye.V., Shifrina R.R., Deev Yu.S., Ryabov Ye.A Study of features of polymerization of lactams initiated by transitional metal oxides. Vysokomol. Soedin. 1983; A25: 2605–10 (In Russian).

    Google Scholar 

  39. Gorbunova E.V., Deev Yu.S., Ryabov E.A. Mechanism of the polymerization of lactams in the presence of transition metal oxides. Plast. Massy 1980; 4: 17–9 (In Russian).

    Google Scholar 

  40. Pilyugin B.G., Gorbunova E.V., Deev Yu.S. Heterogeneous polymerization of caprolactam and preparation of filled poliamide. Plast. Massy 1989; 4: 14–7 (In Russian).

    Google Scholar 

  41. Cheshkov V.M., Natova M.M., Ashurov N.R., Usmanova M.M., Veksel’man A.M. Polymerization filling of polycaprolactam. Eur. Polym. J. 1991; 27: 205–8.

    Article  CAS  Google Scholar 

  42. Natova M.M., Cheshkov V.M., Ashurov N.R., Usmanova M.M., Veksel’man A.M. Polymerization-filled polycaprolactam. Eur. Polym. J. 1993; 29: 653–55.

    Article  CAS  Google Scholar 

  43. Arimoto H., Ishibashi M., Hirai M., Chatani Y. Crystal structure of the y-form of nylon-6. J. Polym. Sci. 1965; A3: 317–26.

    CAS  Google Scholar 

  44. Vol’f L.A., Haikin B.S. Caprolactam Polymerization (Polimerizatsija Kaprolaktama). Leningrad: Leningr. Univ., 1982 (In Russian).

    Google Scholar 

  45. Ring-Opening Polymerization, Vol. 2,: K. J. Ivin and T. Saegusa, eds. London-N.Y.: Elsevier Appl. Sci. Publ. Ltd., 1984.

    Google Scholar 

  46. Tai K., Arai Y., Tagawa T. The simulation of hydrolytic polymerization of e-caprolactam in various reactions. J. Appl. Polym. Sci. 1982; 27: 731–46.

    Article  CAS  Google Scholar 

  47. Rothe M., Reinish G., Jaeger W., Shopov I. Die kationische Caprolactam Polymerization. Makromol. Chem. 1962; B54: 183–88.

    Article  CAS  Google Scholar 

  48. Bozveliev L.G. Peculiaritiy on the changes of sites, depending on disperse fillers contents. Thesisses DSc., Sofia: HICHE, 1989 (In Bulgarian).

    Google Scholar 

  49. Enikolopov N.S., Vol’fson S.A. Production and properties of filled thermoplastics. Plast. Massy 1988; 1: 39–49 (In Russian).

    Google Scholar 

  50. Mozzhukhin V.B., Sadoka S.P., Fedoseev B.L., Rasmanik I.V. Effect of crosslinking additives on the adhesion strength of vinyl chloride-acrylic acid copolymer plastisol coatings. Vysokomol. Soedin. 1988; B27: 414–6 (In Russian).

    Google Scholar 

  51. Marmo M.J., Mostafa M.A., Jinnai H., Fowkes F.M., Manson J.A. Acid-base interaction in fiber-matrix systems. Int. Eng. Chem. Prod. R & D 1976; 15: 206–11.

    Article  CAS  Google Scholar 

  52. Mihaylova Z.V., Pugachevskaya N.F., Kovriga V.V. “Filled composition on the base of nonsaturated polyesters.” In Chemistry and Technology of High Molecular Compounds, A. A. Askadsky, ed. Vol. 14, Moscow: VIN1TI, 1981 (In Russian).

    Google Scholar 

  53. Fowkes F.M. Role of acid-base interfacial bonding in adhesion. J. Adhes. Sci. and Technol. 1987; 1: 7–27.

    Article  CAS  Google Scholar 

  54. Komarneni S.S. Nanocomposites. Mater. Chem. 1992; 2: 1219–30.

    Article  CAS  Google Scholar 

  55. Wang M., PinnavaiaT. Clay-polymer nanocomposites formed from acidic derivatives of montmorilonite and an epoxy resin. Chem. Mater. 1994; 6: 468–74.

    Article  CAS  Google Scholar 

  56. Messersmith P., Giannelis E. Synthesis and characterization of layered silicate-epoxy nanocomposites. Chem. Mater. 1994; 6: 1719–25.

    Article  CAS  Google Scholar 

  57. Schmidt H. New type of non-crystalline solids between inorganic and organic materials. J. Non-Cryst. Solids 1985; 73: 681–91.

    Article  CAS  Google Scholar 

  58. Novak B. M. Hybrid nanocomposite materials–between inorganic glasses and organic polymers. Adv. Mater. 1993; 5: 422–33.

    Article  CAS  Google Scholar 

  59. Wang Z., Lan T., Pinnavaia T. Hybrid organic-inorganic nanocomposites formed from an epoxy polymer and a layered silicic acid. Chem. Mater. 1996; 8: 2200–04.

    Article  CAS  Google Scholar 

  60. Kotsilkova R., Natova M., Ruseva S. Sinthesing and structural characteristics of the epoxy/layered silicate hybrid nanocomposites. Phys.-Chem. Mechanics 1999; 25: (in press) (In Bulgarian).

    Google Scholar 

  61. Kotsilkova R., Okamoto M., Taguchi H., Sato N., Kotaka T. “Shear and elongational flow of smectite/PMMA hybrids and glass fiber/PMVIA composites.” In Progress and Trends in Rheology, Igor Emri, ed. Darmstadt: Springer 1998; 398–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ivanov, Y., Cheshkov, V., Natova, M. (2001). Formation of Polymer Composite Materials in the Presence of Solid Acids and Bases. In: Polymer Composite Materials — Interface Phenomena & Processes. Solid Mechanics and Its Applications, vol 90. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9664-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9664-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0386-8

  • Online ISBN: 978-94-010-9664-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics