Skip to main content

Fluid Saturation: Influence of Wettability and Capillary Pressure

  • Chapter
Petroleum Engineering

Abstract

The equilibrium saturation distribution in a petroleum reservoir prior to production is governed by the pore space characteristics. This happens as a result of non-wetting phase fluid (hydrocarbons) entering pore space initially occupied by wetting phase fluid (water) during migration of hydrocarbons from a source rock region into a reservoir trap. A pressure differential is required for non-wetting phase fluid to displace wetting phase fluid and this is equivalent to a minimum threshold capillary pressure and is dependent on pore size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morrow N.R.: Physics and thermodynamics of capillary action in porous media, Ind. Eng. Chem. 62 (June 1970), 33.

    Article  Google Scholar 

  2. Muskat M.: Physical Principles of Oil Production, McGraw Hill, NY (1949).

    Google Scholar 

  3. Gregg S.J. and Sing, K.S.W.: Adsorption, Surface Area and Porosity, Academic Press, London (1967).

    Google Scholar 

  4. Leverett M.C.: Capillary behaviour in porous solids, Trans. AIME 142 (1941), 152.

    Google Scholar 

  5. Melrose J.C. and Brandner C.F.: Role of capillary forces in determining microscopic displacement efficiency for oil recovery by waterflooding, J. Can Pet. Tech. 13 (1974), 54.

    Google Scholar 

  6. Mohanty K.K., Davis T.H. and Scriven L.E.: Physics of oil entrapment in water wet rock, SPE Paper 9406, AIME Ann. Fall Mtg. (1980).

    Google Scholar 

  7. Shull C.G.: The determination of pore size distribution from gas adsorption data, J. Am. Chem. Soc. 70 (1948), 70.

    Article  Google Scholar 

  8. Pandey B.P. and Singhal A.K.: Evaluation of the capillary pressure curve techniques for determining pore size distribution - a network approach, Powder Tech. 15 (1976), 89.

    Article  Google Scholar 

  9. Kimber O.K., Reed R.L. and Silverberg I.H.: Physical characteristics of natural films formed at crude oil—water interfaces, SPEJ (1966), 153.

    Google Scholar 

  10. Donaldson E.C., Thomas R.D. and Lorenz P.B.: Wettability determination and its effect on recovery efficiency, SPEJ (1969), 13.

    Google Scholar 

  11. Ritter L.C. and Drake R.L.: Pore size distribution in porous material, Ind. Eng. Chem. Fund 17 (1945), 782.

    Google Scholar 

  12. Burdine N.T., Gournay L.S. and Reichertz P.P.: Pore size distribution of petroleum reservoir rocks, Trans. AIME 189 (1950), 195.

    Google Scholar 

  13. Brunnauer S., Emmett P.H. and Teller E.: The adsorption of gases in multimolecular layers, J. Am. Chem. Soc. 60 (1938), 309.

    Article  Google Scholar 

  14. Rose W.R. and Bruce W.A.: Evaluation of capillary character in petroleum reservoir rock, Trans. AIME 186 (1949), 127.

    Google Scholar 

  15. Brooks C.S. and Purcell W.R.: Surface area measurements on sedimentary rocks, Trans. AIME 195 (1952), 289.

    Google Scholar 

  16. Donaldson E.C., Kendall R.F., Baker B.A. and Manning F. S.: Surface area measurements of geologic materials, SPEJ 15 (1975), 111.

    Google Scholar 

  17. Purcell W.R.: Interpretation of capillary pressure data, Trans. AIME 189 (1950), 369.

    Google Scholar 

  18. Hassler G.L. and Brunner E.: Measurement of capillary pressure in small core samples, Trans. AIME 160 (1945), 114.

    Google Scholar 

  19. Slobod R.L., Chambers A. and Prehn W.L.: Use of centrifuge for determining connate water, residual oil and capillary pressure curves of small core samples, Trans. AIME 192 (1951), 127.

    Google Scholar 

  20. Schilthuis R.J.: Connate water in oil and gas sands, Trans. AIME 127 (1938), 199.

    Google Scholar 

  21. Brown H.W.: Capillary pressure investigations, Trans. AIME 192 (1951), 67.

    Google Scholar 

  22. Rapoport L.A. and Leas W.J.: Properties of linear waterfloods, Trans. AIME 198 (1953), 139.

    Google Scholar 

  23. Holmes M. and Tippie D.: Comparisons between log and capillary pressure data to estimate reservoir wetting, SPE Paper 6856, Ann. Fall Mtg. (1977).

    Google Scholar 

  24. Dullien F.A. and Batra V.K.: Determination of the structure of porous media, Ind. Eng. Chem. 62 (Oct. 1970), 25.

    Article  Google Scholar 

  25. Bruce W.A. and Welge H.: The restored state method for determination of oil in place and connate water, OGJ (July 26, 1947 ), 223.

    Google Scholar 

  26. Core Labs Inc.: Special Core Analysis, Spec. Studies Section CL Inc. (April 1974).

    Google Scholar 

  27. Pickell J.J., Swanson B.F. and Hickman W.B.: Application of air—mercury and oil—air capillary pressure data in the study of pore structure and fluid distribution, SPEJ (March 1966), 55.

    Google Scholar 

  28. Morrow N.R. and Harris C.C.: Capillary equilibrium in porous materials, SPEJ (March 1966), 55.

    Google Scholar 

  29. Batycky J., McCaffery F.G., Hodgins P.K. and Fisher D.B.: Interpreting capillary pressure and rock wetting characteristics from unsteady-state displacement measurements, Paper SPE 9403, Proc. 55th Ann. Fall Mtg. SPE of AIMS (1980).

    Google Scholar 

  30. Melrose J.C.: Wettability as related to capillary action in porous media, SPEJ (Sept. 1965), 259.

    Google Scholar 

  31. Sinnokrot A.A., Ramey H.J. and Marsden S.S.: Effect of temperature level upon capillary pressure curves, SPEJ (March 1971), 13.

    Google Scholar 

  32. Mungan N.: Interfacial phenomena and oil recovery: capillarity, In Enhanced Oil Recovery Using Water as a Driving Fluid. World Oil (May 1981), 149.

    Google Scholar 

  33. Dunmore J.M.: Drainage capillary pressure functions and their computation from one another, SPEJ (Oct. 1974), 440.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 J S Archer and C G Wall

About this chapter

Cite this chapter

Archer, J.S., Wall, C.G. (1986). Fluid Saturation: Influence of Wettability and Capillary Pressure. In: Petroleum Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9601-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9601-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-86010-715-6

  • Online ISBN: 978-94-010-9601-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics