Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 231))

Abstract

Design of composite structures can be viewed as a multi-faceted task, one which requires integration of issues related to composite mechanics, structural analysis, optimization, and manufacturing. The major coverage of the paper is on the issue of optimization, with special emphasis on the use of optimization for designing with discrete and integer valued variables required for the stacking-sequence optimization. Different techniques that can be used for stacking sequence optimization are introduced, and different aspects of their application are demonstrated for laminate buckling optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haftka, R.T, and Gürdal, Z., Elements of Structural Optimization, 3rd Edition, Kluwer Academic Publishers, the Netherlands, 1992.

    Google Scholar 

  2. Schmit, L.A., and Fleury, C., “Discrete-Continuous Variable Structural Synthesis Using Dual Methods,” AIAA Journal, 18, pp. 1515–1524, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  3. Reinschmidt, K., “Discrete Structural Optimization,” ASCE, J. Struct. Div., 97, 133–156, 1971.

    Google Scholar 

  4. John, K. V., Ramakrishnan, C. V. and Sharma, K. G., “Optimum Design of Trusses from Available Sections —Use of Sequential Linear Programming with Branch and Bound Algorithm,” Eng. Opt., Vol. 13, pp. 119–145, 1988.

    Article  Google Scholar 

  5. Olsen, G.R., and Vanderplaats, G.N., “Method for Nonlinear Optimization with Discrete Design Variables,” AIAA Journal, 27, pp. 1584–1589, 1989.

    Article  Google Scholar 

  6. Shin, D.K, Gürdal, Z., and Griffin, O. H., “A Penalty Approach for Nonlinear Optimization with Discrete Design Variables,” Engineering Optimization, Vol. 16, pp. 29–42, 1990.

    Article  Google Scholar 

  7. Mesquita, L., and Kamat, M.P., “Optimization of Stiffened Laminated Composite Plates with Frequency Constraints,” Engineering Optimization, 11, pp. 77–88, 1987.

    Article  Google Scholar 

  8. Haftka, R.T., and Walsh, J.L., “Stacking-Sequence Optimization for Buckling of Laminated Plates by Integer Programming,” AIAA Journal (in Press).

    Google Scholar 

  9. Hajela, P., “Genetic Search-An Approach to the Nonconvex Optimization Problem,” AIAA Journal, 28, 7, pp. 1205–1210, 1990.

    Article  Google Scholar 

  10. Lombardi, M., “Ottimizzazione di Lastre in Materiale Composito con L’Uso di un Metodo di Annealing Simulato,” Tesi di Laurea, Department of Structural Mechanics, University of Pavia, Pavia, Italy, 1990.

    Google Scholar 

  11. LeRiche, R., and Haftka, R.T., “Composite Plate Stacking Sequence Optimization for Buckling Load Maximization using a Genetic Algorithm,” Paper submitted to the AIAA/ASME/ASCE/ AHS/ASC 33rd, Structures, Structural Dynamics and Material Conference, Dallas Texas, April 13–15, 1992. “

    Google Scholar 

  12. Mild, M., “Material Design of Composite Laminates with Required In-plane Properties,” Progress in Science and Engineering of Composites, Eds., T. Hayashi, K. Kawata, and S. Umekawa, ICCM-IV, Tokyo, pp. 1725–1731, 1982.

    Google Scholar 

  13. Mild, M., “Optimum Design of Fibrous Laminated Composite Plates Subject to Axial Compression,” Proceedings, 3rd Japan-US Composite Materials Conference, Tokyo, pp. 673–680, 1986.

    Google Scholar 

  14. Mild, M., and Sugiyama, Yoshihiko “Optimum Design of Laminated Composite Plates Using Lamination Parameters,” AIAA/ASME/ASCE/AHS 32th Structures, Structural Dynamics, and Materials Conference, Baltimore, MA., pp. 275–283, 1991.

    Google Scholar 

  15. Garfinkel, R. S., and Nemhauser, G. L., Integer Programming, John Wiley & Sons, Inc., New York, 1972.

    Google Scholar 

  16. Lawler, E. L., and Wood, D. E., “Branch-and-Bound Methods—A Survey,” Operations research, 14, pp. 699–719, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  17. Tomlin, J. A., “Branch-and-Bound Methods for Integer and Non-convex Programming,” in Integer and Nonlinear Programming, J. Abadie (ed.), pp. 437–450, Elsevier Publishing Co., New York, 1970.

    Google Scholar 

  18. Land, A. H., and Doig, A. G., “An Automatic Method for Solving Discrete Programming Problems,” Econometrica, 28, pp. 497–520, 1960.

    Article  MathSciNet  MATH  Google Scholar 

  19. Johnson, E. L., and Powell, S., “Integer Programming Codes,” in Design and Implementation of Optimization Software, Greenberg, H. J. (ed.), pp. 225–240, 1978.

    Chapter  Google Scholar 

  20. Schrage, L., Linear, Integer, and Quadratic Programming with LINDO, 4th Edition, The Scientific Press, Redwood City CA., 1989.

    Google Scholar 

  21. Kovacs, L. B., Combinatorial Methods of Discrete Programming, Mathematical Methods of Operations Research Series, Vol. 2, Alcadémiai Kiadó, Budapest, 1980.

    Google Scholar 

  22. Laarhoven, P. J. M. van., and Aarts, E., Simulated Annealing: Theory and Applications, D. Reidel Publishing, Dordrecht, The Netherlands, 1987.

    Google Scholar 

  23. Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Publishing Co. Inc., Reading, Massachusetts, 1989.

    Google Scholar 

  24. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E., “Equation of State Calculations by Fast Computing Machines,” J. Chem. Physics, 21 (6), pp. 1087–1092, 1953.

    Article  Google Scholar 

  25. Kirkpatrick, S., Gelatt, C. D., Jr., and Vecchi, M. P., “Optimization by Simulated Annealing,” Science, 220 (4598), pp. 671–680, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  26. Cerny, V., “Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm,” J. Opt. Theory Appl., 45, pp. 41–52, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  27. Rutenbar, R. A., “Simulated Annealing Algorithms: An Overview,” IEEE Circuits and Devices, January, pp. 19–26, 1989.

    Google Scholar 

  28. Johnson, D. S., Aragon, C. R., McGeoch, L. A., and Schevon, C., “Optimization by Simulated Annealing: An Experimental Evaluation. Part I. Graph Partitioning,” Operations Research, 37, 1990, pp. 865–893.

    Article  Google Scholar 

  29. Aarts, E., and Korst, J., Simulated Annealing and Boltzmann Machines, A Stochastic Approach to Combinatorial Optimization and Neural Computing, John Wiley & Sons, 1989.

    Google Scholar 

  30. Nahar, S., Salmi, S., and Shragowithz, E. V., in the Proceedings of 22nd Design Automation Conf., Las Vegas, June 1985, pp. 748–752.

    Google Scholar 

  31. Elperin, T, “Monte Carlo Structural Optimization in Discrete Variables with Annealing Algorithm,” Int. J. Num. Meth. Eng., 26, 1988, pp. 815–821.

    Article  MATH  Google Scholar 

  32. Kincaid, R. K., and Padula, S. L., “Minimizing Distortion and Internal Forces in Truss Structures by Simulated Annealing,” Proceedings of the AIAA/ASME /ASCE/AHS/ASC 31st Structures, Structural Dynamics, and Materials Conference, Long Beach, CA., 1990, Part 1, pp. 327–333.

    Google Scholar 

  33. Chen, G.-S., Bruno, R. J., and Salama, M.,“Optimal Placement of Active/Passive Members in Structures Using Simulated Annealing, ” AIAA J., 29 (8), August 1991, pp. 1327–1334.

    Article  Google Scholar 

  34. Lombardi, M., “Ottimizzazione di Lastre in Materiale Composito con l’uso di un Metodo di Annealing Simulato,” Tesi di Laurea, Department of Structural Mechanics, University of Pavia, 1990.

    Google Scholar 

  35. Holland, J. H., Adaptation of Natural and Artificial Systems, The University of Michigan Press, Ann Arbor, MI, 1975.

    Google Scholar 

  36. De Jong, K. A., Analysis of the Behavior of a Class of Genetic Adaptive Systems (Doctoral Dissertation, The University of Michigan; University Microfilms No. 76–9381), Dissertation Abstracts International, 36 (10), 5140B, 1975.

    Google Scholar 

  37. Booker, L., “Improving Search in Genetic Algorithms,” in Genetic Algorithms and Simulated Annealing, Ed. L. Davis, Morgan Kaufmann Publishers, Inc., Los Altos, CA. 1987, pp. 61–73.

    Google Scholar 

  38. Goldberg, D. E., and Samtani, M. P., “Engineering Optimization via Genetic Algorithm,” Proceedings of the Ninth Conference on Electronic Computation, ASCE, February 1986, pp. 471–482.

    Google Scholar 

  39. Hajela, P., “Genetic Search—An Approach to the Nonconvex Optimization Problem,” AIAA J., 28 (7), July 1990, pp. 1205–1210.

    Article  Google Scholar 

  40. Rao, S. S., Pan, T.-S., and Venkayya, V. B., “Optimal Placement of Actuators in Actively Controlled Structures Using Genetic Algorithms,” AIAA J., 29 (6), pp. 942–943, June 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gürdal, Z., Haftka, R.T. (1993). Optimization of Composite Laminates. In: Rozvany, G.I.N. (eds) Optimization of Large Structural Systems. NATO ASI Series, vol 231. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9577-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9577-8_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9579-2

  • Online ISBN: 978-94-010-9577-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics