Skip to main content

Unscrambling the sediment-forming chemical signals

  • Chapter
Marine Geochemistry
  • 647 Accesses

Abstract

In Chapter 3 it was suggested that rivers could be viewed as the carriers of chemical signals to the oceans. We are now attempting to understand the factors that control the chemical composition of marine sediments, and from the point of view of the present volume attention is focused on the upper portions of the sediment column since it is the material here that reacts directly with sea water. In a manner broadly similar to that used for rivers, the oceanic water column can therefore be viewed as a medium through which chemical signals, or fluxes, are transmitted to the upper portions of the marine sediment column. In addition, signals can be transmitted through interstitial water. However, there is a problem in identifying the various chemical signals that are actually transmitted through the water column. A number of authors have suggested that the overall elemental compositions of deep-sea sediments can be considered in terms of the contributions made by individual sediment fractions For example, Krishnaswami (1976) postulated that the total concentration of an element in Pacific pelagic clays is the sum of the contributions made by the detrital and the authigenic fractions — see Equation 16.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aplin, A.C. & D.S. Cronan 1985. Ferromanganese oxide deposits in the central Pacific Ocean, II. Nodules and associated elements. Geochim. Cosmochim. Acta 49, 437–51.

    Article  Google Scholar 

  • Bacon, M.P. & J.N. Rosholt 1982. Accumulation rates of Th-230, Pa-231, and some transition metals on the Bermuda Rise. Geochim. Cosmochim. Acta 46, 651–66.

    Article  Google Scholar 

  • Bender, M.L. 1971. Does upward diffusion supply the excess in manganese in sediments? J. Geophys. Res 76, 4212–15.

    Article  Google Scholar 

  • Bender, M.L., W. Broecker, V. Gornitz, W. Middel, R. Kay, S. Sun & P. Biscaye 1971. Geochemistry of three cores from the East Pacific Rise. Earth Planet. Sci. Lett 12, 425–33.

    Article  Google Scholar 

  • Bender, M.L., T.-L. Ku & W.S. Broecker 1970. Accumulation rates of manganese in pelagic sediments and nodules. Earth Planet. Sci. Lett 8, 143–8.

    Article  Google Scholar 

  • Bostrom, K. & D.E. Fisher 1971. Volcanogenic uranium, vanadium and iron in Indian Ocean sediments. Earth Planet. Sci. Lett 11, 95–8.

    Article  Google Scholar 

  • Bostrom, K. & M.N.A. Peterson 1969. The origin of aluminium-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise. Mar. beol 7, 427–47.

    Google Scholar 

  • Bostrom, K., T. Kraemer & S. Gartner 1973. Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments. Chem. Geol 11, 123–48.

    Article  Google Scholar 

  • Bostrom, K., M.N.A. Peterson, O. Joensuu & D.E. Fisher 1969. Aluminium-poor ferromanganoan sediments on active oceanic ridges. J. Geophys. Res 74, 3261–70.

    Article  Google Scholar 

  • Broecker, W.S. 1974. Chemical oceanography New York: Harcourt Brace Jovanovich.

    Google Scholar 

  • Chester, R. & S.R. Aston 1976. The geochemistry of deep-sea sediments. In Chemical oceanography, J.P. Riley & R. Chester (eds), Vol. 6, 281–390. London: Academic Press.

    Google Scholar 

  • Chester, R. & M.J. Hughes 1967. A chemical technique for the separation of ferromanganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments. Chem. Geol 3, 199–212.

    Article  Google Scholar 

  • Chester, R. & M.J. Hughes 1969. The trace element geochemistry of a North Pacific pelagic clay core. Deep-Sea Res 13, 627–34.

    Google Scholar 

  • Chester, R. & R.G. Messiha-Hanna 1970. Trace element partition patterns in North Atlantic deep-sea sediments. Geochim. Cosmochim. Acta 34, 1121–8.

    Article  Google Scholar 

  • Chester, R. & F.G. Voutsinou 1981. The initial assessment of trace metal pollution in coastal sediments. Mar. Pollut. Bull 12, 84–91.

    Article  Google Scholar 

  • Chester, R., A. Thomas, F.J. Lin, A.S. Basaham & G. Jacinto 1988. The solid state speciation of copper in surface water particulates and oceanic sediments. Mar. Chem 24, 261–92.

    Article  Google Scholar 

  • Chow, T.J., K.W. Bruland, K. Bertine, A. Soutar, M. Koide & E.D. Goldberg 1973. Lead pollution: records in Southern California coastal sediments. Science 181, 551–2.

    Article  Google Scholar 

  • Collier, R. & J.M. Edmond 1984. The trace element geochemistry of marine biogenic particulate matter. Prog. Oceanogr 13, 113–99.

    Article  Google Scholar 

  • Cronan, D.S. 1972. The Mid-Atlantic Ridge near 45°N, XVII: Al, As, Hg and Mn in ferruginous sediments from the median valley. Can. J. Earth Sci 9, 319–23.

    Article  Google Scholar 

  • Cronan, D.S. 1973. Basal ferruginous sediments cored during Leg 16, Deep Sea Drilling Project. In Initial reports of the Deep-Sea Drilling Project, Vol. XVI, 601–4. Washington DC: US Govt Printing Office.

    Google Scholar 

  • Cronan, D.S. 1976. Basal metalliferous sediments from the eastern Pacific. Geol. Soc. Am. Bull 87, 929–34.

    Article  Google Scholar 

  • Cronan, D.S. & D.E. Garrett 1973. Distribution of elements in metalliferous Pacific sediments collected during the Deep Sea Drilling Project. Nature 242, 88–9.

    Google Scholar 

  • Cronan, D.S., Tj. H. van Andel, G.R. Heath, M.G. Dinkleman, R.W. Bennet, D. Buckry, S. Charleston, A. Kanaps, K.S. Rodolfo & R.S. Yeats 1972. Iron-rich basal sediments from the eastern equatorial Pacific: Leg 16, Deep Sea Drilling Project. Science 175, 61–3.

    Article  Google Scholar 

  • Dasch, E.J., J. Dymond & G.R. Heath 1971. Isotopic analysis of metalliferous sediments from the East Pacific Rise. Earth Planet. Sci. Lett 13, 175–80.

    Article  Google Scholar 

  • Davies, T.A. & D.S. Gorsline 1976. Oceanic sediments and sedimentary processes. In Chemical oceanography, J.P. Riley & R. Chester (eds), Vol. 5, 1–80. London: Academic Press.

    Google Scholar 

  • Dymond, J. & H.H. Veeh 1975. Metal accumulation rates in the southeast Pacific and the origin of metalliferous sediments. Earth Planet. Sci. Lett 28, 13–22.

    Article  Google Scholar 

  • Dymond, J., J.B. Corless, G.R. Heath, C.W. Field, E.J. Dasch & H.H. Veeh 1973. Origin of metalliferous sediments from the Pacific Ocean. Geol. Soc. Am. Bull 84, 3355–72.

    Article  Google Scholar 

  • Elderfield, H. 1976. Manganese fluxes to the oceans. Mar. Chem 4, 103–32.

    Article  Google Scholar 

  • El Wakeel, S.K. & J.P. Riley 1961. Chemical and mineralogical studies of deep-sea sediments. Geochim. Cosmochim. Acta 25, 110–46.

    Article  Google Scholar 

  • Froelich, P.N., M.L. Bender & G.R. Heath 1977. Phosphorus accumulation rates in metalliferous sediments on the East Pacific Rise. Earth Planet. Sci. Lett 34, 351–9.

    Article  Google Scholar 

  • Grousset, F.E. & R. Chesselet 1986. The Holocene sedimentary regime in the northern Mid-Atlantic Ridge region. Earth Planet. Sci. Lett 78, 271–87.

    Article  Google Scholar 

  • Heath, G.R. & J. Dymond 1977. Genesis and transformation of metalliferous sediments from the East Pacific Rise, Bauer Deep and Central Basin, northwest Nazca Plate. Geol. Soc. Am. Bull 88, 723–33.

    Article  Google Scholar 

  • Horder, M.F. & D.S. Cronan 1981. The geochemistry of some basal sediments from the western Indian Ocean. Oceanol. Acta 4, 213–21.

    Google Scholar 

  • Horowitz, A. 1974. The geochemistry of sediments from the northern Reykjanes Ridge and the Iceland-Faroes Ridge. Mar. Geol 17, 103–22.

    Article  Google Scholar 

  • Krishnaswami, S. 1976. Authigenic transition elements in Pacific pelagic clays. Geochim. Cosmochim. Acta 40, 425–34.

    Article  Google Scholar 

  • Lalou, C. 1983. Genesis of ferromanganese deposits: hydrothermal origin. In Hydrothermal processes at seafloor spreading centres, P.A. Rona, K. Bostrom, L. Laubier & K.L. Smith (eds), 503–34. New York: Plenum.

    Google Scholar 

  • Lapicque, G., H.D. Livingston, C.E. Lambert, E. Bard & L.D. Labeyrie 1987. Interpretation of 239, 240Pu in Atlantic sediments with a non-steady state input model. Deep-Sea Res 34, 1841–50.

    Article  Google Scholar 

  • Marchig, V. & H. Grundlach 1982. Iron-rich metalliferous sediments on the East Pacific Rise: prototype of undifferentiated metalliferous sediments on divergent plate boundaries. Earth Planet. Sci. Lett 58, 361–82.

    Article  Google Scholar 

  • Martin, J.M. & M. Whitfield 1983. The significance of the river input of chemical elements to the oceans. In Trace metals in sea water, C.S. Wong, E. Boyle, K.W. Bruland, J.D. Burton & E.D. Goldberg (eds), 256–96. New York: Plenum.

    Google Scholar 

  • Murray, J. & A.F. Renard 1891. Deep-sea deposits Sci. Rep. Challenger Exped., no. 3. London.

    Google Scholar 

  • Patterson, C. 1987. Global pollution measured by lead in mid-ocean sediments. Nature 326, 244.

    Article  Google Scholar 

  • Piper, D.Z. 1973. Origin of metalliferous sediments from the East Pacific Rise. Earth Planet. Sci. Lett 19, 75–82.

    Article  Google Scholar 

  • Preston, M.R. 1989. Marine pollution. In Chemical oceanography, J.P. Riley (ed.), Vol. 9, 53–196. London: Academic Press.

    Google Scholar 

  • Revelle, R.R. 1944. Scientific results of the cruise VII of the ‘Carnegie’. Publ. Carnegie Inst 556, 1–180.

    Google Scholar 

  • Sawlan, J.J. & J.W. Murray 1983. Trace metal remobilization in the interstitial waters of red clay and hemipelagic marine sediments. Earth Planet. Sci. Lett 64, 213–30.

    Article  Google Scholar 

  • Sayles, F.L. & J.L. Bischoff 1973. Ferromanganoan sediments in the equatorial east Pacific. Earth Planet. Sci. Lett 19, 330–6.

    Article  Google Scholar 

  • Sayles, F.L., T.-L. Ku & P.C. Bowker 1975. Chemistry of ferromanganoan sediments of the Bauer deep. Geol. Soc. Am. Bull 86, 1423–31.

    Article  Google Scholar 

  • Thomas, A.R. 1987. Glacial-interglacial variations in the geochemistry of North Atlantic deep-sea deposits. Ph.D. Thesis, University of Liverpool.

    Google Scholar 

  • Thompson, J., M.S.N. Carpenter, S. Colley, T.R.S. Wilson, H. Elderfield & H. Kennedy 1984. Metal accumulation in northwest Atlantic pelagic sediments. Geochim. Cosmochim. Acta 48, 1935–48.

    Article  Google Scholar 

  • Turekian, K.K. 1967. Estimates of the average Pacific deep-sea clay accumulation rate from material balance considerations. Prog. Oceanogr 4, 226–44.

    Google Scholar 

  • Turekian, K.K. & J. Imbrie 1966. The distribution of trace elements in deep-sea sediments of the Atlantic Ocean. Earth Planet. Sci. Lett 1, 161–8.

    Article  Google Scholar 

  • Veron, A., C.E. Lambert, A. Isley, P. Linet & F. Grousset 1987. Evidence of recent lead population in deep north-east Atlantic sediments. Nature 326, 278–81.

    Article  Google Scholar 

  • Von Damm, K.L., J.M. Edmond, B. Grant, C.J. Measures, B. Waiden & R.F. Weiss 1985. Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. Geochim. Cosmochim. Acta 49, 2197–220.

    Article  Google Scholar 

  • von der Borch, C.C. & R.W. Rex 1970. Amorphous iron oxide precipitates in sediments cored during Leg 5, Deep Sea Drilling Project. In Initial Reports of the Deep Sea Drilling Project, Vol. 5, 541–4. Washington DC: US Govt Printing Office.

    Google Scholar 

  • Wedepohl, K.H. 1960. Spurenanalytische Untersuchungen an Tiefseetonen aus dem Atlantik. Geochim. Cosmochim. Acta 18, 200–31.

    Article  Google Scholar 

  • Wedepohl, K.H. 1968. Chemical fractionation in the sedimentary environment. In Origin and distribution of the elements, L. H. Ahrens (ed.), 999–1016. Oxford: Pergamon.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Roy Chester

About this chapter

Cite this chapter

Chester, R. (1990). Unscrambling the sediment-forming chemical signals. In: Marine Geochemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9488-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9488-7_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9490-0

  • Online ISBN: 978-94-010-9488-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics