Skip to main content

Superposition and Macroscopic Observation

  • Chapter

Part of the book series: Synthese Library ((SYLI,volume 78))

Abstract

The principle of superposition has long plagued the quantum mechanics of macrosopic bodies. Macroscopic objects are taken to be composed of a large number of interacting constituents, each in its interaction with others governed by the laws of quantum mechanics. For any two systems already represented, quantum theory represents the composite by a vector in the tensor product of the Hilbert spaces representing the systems separately. Thus, an n-body system is represented by a vector in the Hilbert space \( {H^n} = {H_I} \otimes {H_{II}} \otimes ... \otimes {H_N} \). When n becomes large enough to constitute a macroscopic body the treatment is problematic. Macroscopic states, it appears, do not superpose. Macroscopic bodies seem to possess sharp values for all observable quantities simultaneously.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ballentine, L. E., ‘The Statistical Interpretation of Quantum Mechanics’, Reviews of Modern Physics 42 (1970), 358–381.

    Article  Google Scholar 

  • Bub, J., ‘The Daneri-Loinger-Prosperi Quantum Theory of Measurement’, Il Nuovo Cimento 57B (1968), 503–520.

    Article  Google Scholar 

  • Daneri, A., Loinger, A., and Prosperi, G. M., ‘Quantum Theory of Measurement and Ergodicity Conditions’, Nuclear Physics 33 (1962), 297–319.

    Article  Google Scholar 

  • Daneri, A., Loinger, A., and Prosperi, G. M., ‘Further Remarks on the Relation Between Statistical Mechanics and Quantum Theory of Measurement’, Il Nuovo Cimento 44B (1966), 119–128.

    Article  Google Scholar 

  • Fano, U., ‘Description of States in Quantum Mechanics by Density Matrices and Operator Techniques’, Reviews of Modern Physics 29 (1957), 74–93.

    Article  Google Scholar 

  • Farquhar, I. E. and Landsberg, P. T., ‘On the Quantum-Statistical Ergodic and H-Theorems’, Proceedings of the Royal Society, Series A, 239 (1957), 134–144.

    Article  Google Scholar 

  • Fine, A., ‘Insolubility of the Quantum Measurement Problem’, Physical Review D2 (1970), 2783–2787.

    Google Scholar 

  • Fine, A., ‘The Two Problems of Quantum Measurement’, in P. Suppes (ed.), Logic, Methodology, and Philosophy of Science IV, North Holland, Amsterdam, 1973.

    Google Scholar 

  • Fine, A., ‘Probability and the Interpretation of Quantum Mechanics’, British Journal for the Philosophy of Science 24 (1973), 1–37.

    Article  Google Scholar 

  • Groenewold, H. J., ‘Quantal Observation in Statistical Interpretation’, in T. Bastin (ed.), Quantum Theory and Beyond, Cambridge University Press, Cambridge, 1971.

    Google Scholar 

  • Jauch, J., Foundations of Quantum Theory, Addison-Wesley, New York, 1968.

    Google Scholar 

  • Kochen, S. and Specker, E., ‘The Problem of Hidden Variables in Quantum Mechanics’, Journal of Mathematics and Mechanics 17 (1967), 59–87.

    Google Scholar 

  • Prosperi, G. M. and Scotti, A., ‘Ergodicity Conditions in Quantum Mechanics’, Journal of Mathematical Physics 1 (1960), 218–221.

    Article  Google Scholar 

  • Putnam, H., ‘A Philosopher Looks at Quantum Mechanics’, in R. G. Colodny (ed.), Beyond the Edge of Certainty, Prentice-Hall, Englewood Cliffs, 1965.

    Google Scholar 

  • van Fraassen, B., ‘A Formal Approach to the Philosophy of Science’, in R. G. Colodny (ed.), Paradigms and Paradoxes, University of Pittsburgh Press, Pittsburgh, 1972.

    Google Scholar 

  • van Fraassen, B., ‘Semantic Analysis of Quantum Logic’, in C. A. Hooker (ed.), Contemporary Research in Foundations and Philosophy of Quantum Mechanics, Reidel, Dordrecht, Holland, 1973.

    Google Scholar 

  • van Kampen, N. G., ‘Quantum Statistics of Irreversible Processes’, Physica 20 (1954), 603–621.

    Article  Google Scholar 

  • von Neumann, J., ‘Beweiss des Ergodensatzes und des H-Theorems in der neuen Mechanik’, Zeitschrift fur Physik 57 (1929), 30–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cartwright, N.D. (1976). Superposition and Macroscopic Observation. In: Suppes, P. (eds) Logic and Probability in Quantum Mechanics. Synthese Library, vol 78. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9466-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9466-5_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-1200-4

  • Online ISBN: 978-94-010-9466-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics