Skip to main content

Upper Bounds on Post-Shakedown Quantities in Poroplasticity

  • Chapter

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 83))

Abstract

In this paper various inequalities are established in coupled poroplasticity. These provide upper bounds that can be computed directly for various history-dependent post-shakedown quantities. The main features of the constitutive and computational models considered are as follows: two-phase material; full saturation; piecewise linearization of yield surfaces and hardening; associativity; linear Darcy law; finite element space-discretization in Prager’s generalized variables. The results achieved are illustrated by comparative numerical tests.

Dedicated to the memory of Professor P. D. Panagiotopoulos.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abaqus/Standard (1999): Theory and User’s manuals, rel. 5. 8, HKS Inc., Providence, RI, USA.

    Google Scholar 

  2. Cocchetti G., Maier G. (1998): Static shakedown theorems in piecewiselinearized poroplasticity, Archive of Applied Mechanics, 68, 651–661.

    Article  MATH  Google Scholar 

  3. Cocchetti G., Maier G. (2000): Shakedown analysis in poroplasticity by linear programming, Int. J. Num. Meth. Engng, 47, 141–168.

    Article  MathSciNet  MATH  Google Scholar 

  4. Cohn M. Z., Maier G. [Eds.] (1977): Engineering plasticity by mathematical programming, Pergamon Press, New York.

    Google Scholar 

  5. Comi C., Maier G., Perego U. (1992): Generalized variables and extremum theorems in discretized elastic-plastic analysis, Comp. Meth. Appl. Mech. Engng., 96, 213–237.

    Article  MathSciNet  MATH  Google Scholar 

  6. Comi C., Perego U. (1995): A unified approach for variationally consistent finite elements in elastoplasticity, Comp. Meth. Appl. Mech. Engng., 121, 323–344.

    Article  MathSciNet  MATH  Google Scholar 

  7. Coussy O. (1995): Mechanics of porous continua, John Wiley & Sons, Chichester.

    MATH  Google Scholar 

  8. Fauchet B., Coussy O., Carrère A., Tardieu B. (1992): Poroplastic analysis of concrete dams and their foundations, Dam Engineering, 2, 165–192.

    Google Scholar 

  9. Kamenjarzh J. A. (1996), Limit analysis of solids and structures, CRC Press, London.

    MATH  Google Scholar 

  10. Koiter W. T. (1960): General theorems for elastic-plastic solids, in “Progress in Solid Mechanics”, Vol. 1, Sneddon J. N., Hill R. (Eds.), North-Holland Pub., Amsterdam, 167–221.

    Google Scholar 

  11. König J. A. (1987): Shakedown of Elastic-Plastic Structures, Elsevier, Amsterdam.

    Google Scholar 

  12. Kaliszky S. (1989): Plasticity: theory and engineering applications, Elsevier, Amsterdam, North Holland.

    MATH  Google Scholar 

  13. Lewis R. W., Schrefler B. A. (1998): The finite element method in the static and dynamic deformation and consolidation of porous media, John Wiley & Sons, Chichester.

    MATH  Google Scholar 

  14. Lubliner J. (1990): Plasticity theory, Mc Millan Publ., New York.

    MATH  Google Scholar 

  15. Maier G. (1970): A matrix structural theory of piecewise-linear plasticity with interacting yield planes, Meccanica, 5, 55–66.

    Google Scholar 

  16. Maier G. (1973): Upper bounds on deformations of elastic-workhardening structures in the presence of dynamic and second-order effects, Journal of Structural Mechanics, 2, 265–280.

    Article  Google Scholar 

  17. Maier G., Comi C. (1997): Variational finite element modelling in poroplasticity, in “Recent developments in computational and applied mechanics”, Reddy B. D. (Ed.), CIMNE, Barcelona, 180–199.

    Google Scholar 

  18. Math Works Inc. (1996): Matlab User’s Manual and Optimization Toolbox Manual, rel. 5.

    Google Scholar 

  19. Neale B. G., Symonds P. S. (1951): A method for calculating the failure load for a framed structure subjected to fluctuating loads, J. Instn. Civil Engrs., 35, 186–197.

    Article  Google Scholar 

  20. Ponter A. R. S. (1972): An upper bound on the small displacements of elastic, perfectly plastic structures, Journal of Applied Mechanics, Ser. E, 39, 959–963.

    Article  Google Scholar 

  21. Symonds P. S. (1951): Shakedown in continuous media. Journal of Applied Mechanics, 18, 85–89.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Cocchetti, G., Maier, G. (2000). Upper Bounds on Post-Shakedown Quantities in Poroplasticity. In: Weichert, D., Maier, G. (eds) Inelastic Analysis of Structures under Variable Loads. Solid Mechanics and Its Applications, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9421-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9421-4_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0382-0

  • Online ISBN: 978-94-010-9421-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics