Skip to main content

Experimental Investigation of Vortex Core in Reverse Swirl Flow From Francis Runner

  • Conference paper
Hydraulic Machinery and Cavitation

Abstract

It is well known that the precession movement of the helical vortex core generated in the swirl flow from the runner exit of Francis turbine causes the pressure oscillation in the draft tube. This phenomenon which occurs in the part-load operation have been investigated in detail for a long time. At the part-load operation, flow from the runner exit has the swirl in the same direction as that of the runner rotation. On the other hand, when the turbine operates at over-load, flow from the runner exit has the swirl against the runner rotation and the characteristics of the pressure oscillation in such a situation as this is very different in quality from that at the part-load operation. Sometimes this phenomenon raises a hard problem in the actual plant. In the present paper, the behavior of the vortex core and the basic characteristics of pressure oscillation under the conditions of reverse swirl flow are investigated using a small Francis turbine test rig with a cone-type draft tube.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a :

guide vane opening (GVO) [m]

D e :

exit diameter of runner [m]

Q :

discharge [m3/s]

Δ h :

surge amplitude [m]

Q 11 :

unit discharge,EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacaWGrbGaai4laiaacIcacaWGebWaa0ba % aSqaaiaadwgaaeaacaaIYaaaaOWaaOaaaeaacaWGibaaleqaaOGaai % ykaaaa!459A!</EquationSource><EquationSource Format="TEX"><![CDATA[$$Q/(D_e^2\sqrt H )$$

q :

injecting air quantity [m3/s]

n :

runner speed [rpm]

H :

effective head [m]

f :

surge frequency [Hz]

n 11 :

unit speed, = EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacaWGUbGaamiramaaBaaaleaacaWGLbaa % beaakiaac+cadaGcaaqaaiaadIeaaSqabaaaaa!4397!</EquationSource><EquationSource Format="TEX"><![CDATA[$$n{D_e}/\sqrt H$$

f 11 :

unit frequency, = EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacaWGUbGaamiramaaBaaaleaacaWGLbaa % beaakiaac+cadaGcaaqaaiaadIeaaSqabaaaaa!4397!</EquationSource><EquationSource Format="TEX"><![CDATA[$$f{D_e}/\sqrt H$$

References

  1. Fisher, R.K., Jaeger, E.U., A contribution for understanding the flow characteristics effecting pressure surge, Proc. JAHR Symposium, Beijing (1994), Vol.1, A-1, pp.33–44.

    Google Scholar 

  2. Nishi, M., Kubota, T., Senoo, Y., Surging characteristics of conical and elbow-type draft tubes, Proc. JAHR Symposium,Stirling(1984), pp. 272–283.

    Google Scholar 

  3. Hosoi, Y., Experimental evaluation of characteristics of draft tube surging, JAHR Work Group on the behavior of Hydraulic Machinery Under Steady Oscillatory Conditions, Proc 7th Meeting,Ljublyana, Slovenia (1995), A-4.

    Google Scholar 

  4. Hosoi, Y., Characteristics of draft tube surging —A review of recent knowledge—, Research Reports of The Faculty of Engineering, Tokyo Denki University, No.37, Tokyo Denki University (1989), pp. 2738.

    Google Scholar 

  5. Guarga, R., Fanelli, M.A., Nishi, M., System Instability Caused by Hydraulic Machinery, G’hapt.6, Vibration and Oscillation of Hydraulic Machinery, (Ohashi, H., ed.), International Editorial Committee for Book Series on Hydraulic Machinery, Gower Publishing Co., Vermont (1991), pp. 210–225.

    Google Scholar 

  6. Hosoi, Y., Characteristics of pressure surge due to whirling water from exit of water turbine runner, Bulletin of the.ISME, Vol. 16, No. 99 (1973), pp. 1324–1335.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Furuie, Y., Mita, H., Hosoi, Y. (1996). Experimental Investigation of Vortex Core in Reverse Swirl Flow From Francis Runner. In: Cabrera, E., Espert, V., Martínez, F. (eds) Hydraulic Machinery and Cavitation. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9385-9_85

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9385-9_85

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9387-3

  • Online ISBN: 978-94-010-9385-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics