Skip to main content

Functional Modelling of Pump Volute Geometry

  • Conference paper
Hydraulic Machinery and Cavitation

Abstract

The task of hydraulic design is usually undertaken using traditional techniques, coupled with many simplifying assumptions. This can lead to long design lead-times and under-utilisation of performance potential. New computational approaches are now required. In this resolve, some considerations of linking intelligent computer technology with fundamental aspects of hydraulic design, in particular pump volute geometry, are discussed. The paper firstly reviews volute flowfield measurements and the effects of geometry, and goes on to discuss some recent experiences in developing an experimental system to provide a functional modelling facility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binder, R.C., Knapp, R.T.: Experimental Determination of the Flow Characteristics in the Volutes of Centrifugal Pumps, Trans. ASME, HYD-58–4, 1936.

    Google Scholar 

  2. Fischer, K, Thoma, D.: Investigation of the Flow Conditions in a Centrifugal Pump, Trans. ASME, Vol 54., HYD-54–8, 1932.

    Google Scholar 

  3. Knapp, R.T.: Centrifugal Pump Performance as Affected by Design Features, Trans. ASME, April 1941.

    Google Scholar 

  4. Bowerman, R.D., Acosta, A.J.: Effect of the Volute on Performance ofa Centrifugal Pump Impeller, Trans. ASME, July 1957.

    Google Scholar 

  5. Iversen, H.W., Rolling, R.E., Carlson, J.J.: Volute Pressure Distribution, Radial Force on the Impeller and Volute Mixing Losses of a Radial Flow Centrifugal Pump, Trans. ASAIE. Jnl Eng for Power, April 1960.

    Google Scholar 

  6. Csanady, G.T.: Radial Forces on a Pump Impeller Caused by a Volute Casing, Trans. ASME. Jn1.Eng. for Power, October 1962.

    Google Scholar 

  7. Worster, R.C.: The Interaction of Impeller and Volute in Determining the Performance of a Centrifugal Pump, BHRA paper RR679, November 1960.

    Google Scholar 

  8. Worster, R.C., The Flow in Volutes and its Effect on Centrifugal Pump Performance, Proc. IMechE, Vol. 177, 1963.

    Google Scholar 

  9. Pekrun, M., Flörkemeier, K.H.: Experimental Investigation on Volutes of Centrifugal Pumps with Radial or Tangential Diffusers, Pu mpentaging Karlsruhe ‘7$, September 1978, Germany.

    Google Scholar 

  10. Hira, D.S., Vasandani.,V.P.: Influence of the Volute Tongue Length and Angle on the Pump Performance, Jnl. of the Institute of Engineers India. Part M.L. No.56.

    Google Scholar 

  11. Imaichi, K., Tsujimoto, Y, Yoshida, Y.: A Two-dimensional Analysis of the Interaction Effects of a Radial Impeller in Volute Casing, Proc. IAHR Symposium, Tokyo 1980.

    Google Scholar 

  12. Kurokawa, J.: Theoretical Determination of the Flow Characteristics in Volutes, Proc. IAHR Symposium, Tokyo 1980.

    Google Scholar 

  13. Brownell, R.B., Flack, R.D.: Flow Characteristics in the Volute and Tongue Region of a Centrifugal Pump, ASME paper 84-GT-82, 1984.

    Google Scholar 

  14. Thomas, R.N., Kostrzewsky, G.,1., Flack, R.D.: Velocity measurements in a Pump Volute with a Non-Rotating Impeller, Intl. Jnl. Heat R Fluid Flow, Vol.7 No.l. 1986.

    Google Scholar 

  15. Miner, S.M., Beaudoin, R.J., Flack, R.D.: Laser Velocimeter Measurements in a Centrifugal Flow Pump, Trans. ASME, Jnl. of Turbomachinery, Vo1. 1 11, 1989.

    Google Scholar 

  16. Dong, R., Chu, S., Katz, J.: Quantitative Visualisation of the Flow within the Volute of a Centrifugal Pump, FED-Vol 107, General Topics in Fluids Engineering, ASME 1991.

    Google Scholar 

  17. Thackray, P.R.: Computer-Aided Analytical Design of Centrifugal Pumps, Ph.D. Thesis, Hull University, UK, 1994.

    Google Scholar 

  18. Tomiyama, T., Yoshikawa, H.: Requirements and Principles for Intelligent CAD Systems, Knowledge Engineering in CAD, Elsevier 1985.

    Google Scholar 

  19. Simmons. M.K.: Artificial Intelligence for Engineering Design, Computer-Aided Engineering Journal, April 1984.

    Google Scholar 

  20. Jakiela, M.J., Papalambros, P.Y.: Design and Implementation of a Prototype Intelligent CAD System, Trans. ASMEJn1. Mech. Trans. and Automation in Design. June 1989.

    Google Scholar 

  21. Ohsuga, S.: Toward Intelligent CAD Systems, Computer-Aided Design. Vol. 21, No. 5. June 1989.

    Google Scholar 

  22. Gevarter, W.B.: The Languages and Computers and Computers of Artificial Intelligence, Computers in Mechanical Engineering, Nov. 1983.

    Google Scholar 

  23. Winston, P.H., Hom, B. K. P.: LISP. Addison-Wesley Publishing Co.. 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Thackray, P.R., James, R.D. (1996). Functional Modelling of Pump Volute Geometry. In: Cabrera, E., Espert, V., Martínez, F. (eds) Hydraulic Machinery and Cavitation. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9385-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9385-9_41

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9387-3

  • Online ISBN: 978-94-010-9385-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics