Skip to main content

The evolutionary consequence of major genomic changes in Amphibia

  • Chapter
Book cover Chromosomes Today

Abstract

It seems appropriate to begin this discussion by examining the kinds of major genomic changes that have happened in the course of amphibian evolution, and to segregate those that may have been expected to contribute to the divergence and isolation of species from those that are more likely to have followed on after primary speciation events. In the present context, a genomic change is considered to be “major” if its consequences are clearly detectable at the cytological level and are likely to constitute insurmountable reproductive barriers between species or groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bennett, M. D. 1982. The spatial distribution of chromosomes. In Kew Chromosome Conference II., P. E. Brandham and M. D. Bennett, eds., 71–80. London: George Allen & Unwin.

    Google Scholar 

  • Britten, R. J. and E. H. Davidson 1971. Repetitive and non-repetitive DNA sequences and a speculation on the origins of evolutionary novelty. Quart. Rev. Biol. 46, 111–133.

    Google Scholar 

  • Callan, H. G. 1972. Replication of DNA in the chromosomes of eukaryotes. Proc. R. Soc. Lond. 1981, 19–41.

    Google Scholar 

  • De Weese, J. 1975. Chromosomes in Eleutherodactylus (Apura, Leptodactylidae). Mamm. Chrom. News1. 16, 121–123.

    Google Scholar 

  • Dover, G. A. 1982. Molecular drive: a non-Darwinian model of evolution. Nature (Lond.) 299, 111–117.

    Article  Google Scholar 

  • Dowsett, A. P. 1983. Closely related species of Drosophila can contain different libraries of middle repetitive DNA sequences. Chromosoma (Berl.) 88, 104–108.

    Article  Google Scholar 

  • Goin, 0. B., C. J. Goin and K. Bachman 1968. DNA and amphibian life history. Copeia, 532–540.

    Google Scholar 

  • Highton, R. 1962. Revision of North American salamanders of the genus Plethodon. Bull. Fla. State Mus. 6, 235–267.

    Google Scholar 

  • Horner, H. A. and H. C. Macgregor 1983.0 value and cell volume: their significance in the evolution and development of amphibians. J. Cell Sci. in press.

    Google Scholar 

  • Macgregor, H. C. 1978. Some trends in the evolution of very large chromosomes. Phil. Trans. R. Soc. Lond. B283, 309–318.

    Google Scholar 

  • McFarlane, P. W. and H. G. Callan 1973. DNA replication in the chromosomes of the chicken, Gallus domesticus. J. Cell Sci. 13, 821–839.

    Google Scholar 

  • Macgregor, H. C., S. Mizuno and M. Vlad 1976. Chromosomes and DNA sequences in salamanders. In Chromosomes Today, P. L. Pearson and K. R. Lewis, eds., 331–339. New York: John Wiley & Sons.

    Google Scholar 

  • Mizuno, S. and H. C. Macgregor 1974. Chromosomes, DNA sequences, and evolution in salamanders of the genus Plethodon. Chromosome (Berl.) 48, 239–296.

    Google Scholar 

  • Mizuno, S., C. Andrews and H. C. Macgregor 1976. Interspecific “common” repetitive DNA sequences in salamanders of the genus Plethodon. Chromosoma (Berl.) 58, 1–31.

    Article  Google Scholar 

  • Morescalchi, A. 1980. Evolution and karyology of the amphibians. Boll. Zool. 47 (suppl.), 113–126.

    Article  Google Scholar 

  • Rechavi, G., D. Givoli and E. Canaani 1982. Activation of a cellular oncogene by DNA rearrangements: possible involvement of an IS-like element. Nature Mond.) 300, 607–610.

    Article  Google Scholar 

  • Schmid, M. 1978. Chromosome banding in Amphibia. 1. Constitutive heterochromatin and nucleolus organizer regions in Ranidae, Microhylidae and Rhacophoridae. Chromosoma (Berl.) 68, 131–148.

    Google Scholar 

  • Schmid, M. 1980. Chromosome banding in Amphibia. IV. Differentiation of GC- and AT-rich chromosome regions in Anura. Chromosome (Berl.) 77, 83–103.

    Google Scholar 

  • Schmid, M., J. Olert and C. Klett 1979. Chromosome banding in Amphibia. III. Sex chromosomes in Triturus. Chromosome (Berl.) 71, 29–55.

    Google Scholar 

  • Smith, G. P. 1973. Unequal crossing over and the evolution of multigene families. Cold Spring Harbor Symp. Quant. Biol. 38, 507–514.

    Google Scholar 

  • Smith, G. P. 1976. Evolution of repeated DNA sequences by unequal crossing over. Science 191, 528–535.

    Article  Google Scholar 

  • Summerbell, D., J. H. Lewis and L. Wolpert 1973. Positional information in chick limb morphogenesis. Nature (Lund.) 244, 492–496.

    Article  Google Scholar 

  • Thiebaud, C. H. and M. Fischberg 1977. DNA content in the genus Xenopus. Chromosome (Berl.) 59, 253–257.

    Article  Google Scholar 

  • Uzzell, T. M. 1964. Relations of the diploid and triploid species of the Ambystoma jeffersonianum complex ( Amphibia, Caudata). Copeia 2, 257–300.

    Google Scholar 

  • Wake, D. B. 1966. Comparative osteology and evolution of the lungless salamanders family Plethodontidae. Mem. Southern Calif. Acad. Sci. 4.

    Google Scholar 

  • Yunis,J. J. 1983. The chromosomal basis of human neoplasia. Science 221, 227–235.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 The Organising Committee of the VIII International Chromosome, Conference, Lübeck

About this chapter

Cite this chapter

Macgregor, H.C. (1984). The evolutionary consequence of major genomic changes in Amphibia. In: Bennett, M.D., Gropp, A., Wolf, U. (eds) Chromosomes Today. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9163-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9163-3_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9165-7

  • Online ISBN: 978-94-010-9163-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics