Skip to main content
  • 112 Accesses

Abstract

Although the individual modes of resistance to antimicrobial drugs are very diverse, they can be grouped into a limited set of general mechanisms that account for most types of resistance encountered in medical practice. These include:

  1. 1.

    conversion of the active drug to an inactive derivative by enzyme(s) synthesized by the resistant cells;

  2. 2.

    loss of sensitivity of the drug target site as a result of:

    1. (a)

      covalent modification by enzyme activity in the resistant cells,

    2. (b)

      mutation(s) affecting the target, or

    3. (c)

      acquisition of genetic information encoding either a drug-resistant form of the target enzyme or overproduction of the drug-sensitive enzyme.

  3. 3.

    Removal of the drug from the cellular interior by drug efflux systems located in the cell envelope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

  • Arthur, M., Reynolds, P. and Courvalin, P (1996). Glycopeptide resistance in enterococci. Trends Microbiol. 4, 401.

    Article  Google Scholar 

  • Bennett, P M. and Chopra, 1. (1993). Molecular basis of ß-lactamase induction in bacteria. Antimicrob. Agents Chemother. 37, 153.

    Google Scholar 

  • Borst, P and Ouellette, M. (1995). New mechanisms of drug resistance in parasitic protozoa. Ann. Rev. Microbiol. 49, 427.

    Article  Google Scholar 

  • Bush, K., Jacoby, G. A. and Medeiros, A. A. (1995). A functional classification scheme for ß-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39, 1211.

    Google Scholar 

  • Chopra, I. et al. (1997). The search for antimicrobial agents effective against bacteria resistant to multiple antibiotics. Antimicrob. Agents Chemother. 41, 497.

    Google Scholar 

  • Cole, S. T. (1994). Mycobacterium tuberculosis: drug resistance mechanisms. Trends Microbiol. 2, 411.

    Article  Google Scholar 

  • Davies, J. (1994). Inactivation of antibiotics and the dissemination of resistance genes. Science 264, 375.

    Article  Google Scholar 

  • Ghuysen, J.-M. et al. (1996). Pencillin and beyond: evolution, protein fold, multimodular polypeptides and multidomain complexes. Microb. Drug Resist. 2, 163.

    Article  Google Scholar 

  • Huovinen, P. et al. (1995). Trimethoprim and sulfonamide resistance. Antimicrob. Agents Chemother. 39, 279.

    Google Scholar 

  • Katz, R. A. and Skalka, A. M. (1994). The retroviral enzymes. Ann. Rev. Biochem. 63, 133.

    Article  Google Scholar 

  • Livermore, D. M. (1995). Bacterial resistance to car- bapenems. In Antimicrobial Resistance: A Crisis in Health Care (eds D. J. Jungkind et al.), Plenum Press, New York, p.35.

    Google Scholar 

  • Molla, A. et al. (1996). Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. Nature Medicine 2, 760.

    Article  Google Scholar 

  • Murray, I. A. and Shaw, W V (1997). O-acetyl transferases for chloramphenicol and other natural products. Antimicrob. Agents Chemother. 41,1.

    Google Scholar 

  • Park, J. T. (1996). The convergence of murein recycling research with ß-lactamase research. Microb. Drug Resist. 2, 105.

    Article  Google Scholar 

  • Paulsen, I. T, Brown, M. H. and Skurray, R. A. (1996). Proton-dependent multidrug efflux systems. Microbiol. Rev. 60, 575.

    Google Scholar 

  • Payne, D. J. (1993). Metallo-ß-lactamases — a new therapeutic challenge. J. Med. Microbiol. 39, 93.

    Article  Google Scholar 

  • Richman, D. (1994). Drug resistance in viruses. Trends Microbiol. 2,401.

    Article  Google Scholar 

  • Roberts, M. C. (1996). Tetracycline resistance determinants; mechanisms of action, regulation of expression, genetic mobility and distribution. FEMS Microbiol. Rev. 19, 1.

    Article  Google Scholar 

  • Sanglard, D. et al. (1995). Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob. Agents Chemother. 39, 2378.

    Google Scholar 

  • Shaw, K. J. et al. (1993). Molecular genetics of aminoglycoside resistance genes and familial relationships of aminoglycoside-modifying enzymes. Microbiol. Rev. 57, 138.

    Google Scholar 

  • Spratt, B. G. (1994). Resistance to antibiotics mediated by target alterations. Science 264, 388.

    Article  Google Scholar 

  • Su, X.-Z. et al. (1997). Complex polymorphisms in a —330 kDa protein are linked to chloroquine-resist- ant R falciparum in Southeast Asia and Africa. Cell 91, 593.

    Article  Google Scholar 

  • Thanassi, D. G., Suh, G. S. B. and Nikaido, H. (1995). Role of outer membrane in efflux-mediated tetracycline resistance of Escherichia coli. J. Bacteriol. 177, 998.

    Google Scholar 

  • Van den Bossche, H., Marichal, P and Odds, F. C. (1994) Molecular mechanisms of drug resistance in fungi. Trends Microbiol. 2, 393.

    Article  Google Scholar 

  • Weisblum, B. V (1995). Erythromycin resistance by ribo- some modification. Antimicrob. Agents Chemother. 39, 577.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 The Kluwer Academic Publishers

About this chapter

Cite this chapter

Franklin, T.J., Snow, G.A. (1998). Biochemical mechanisms of resistance to antimicrobial drugs. In: Biochemistry and Molecular Biology of Antimicrobial Drug Action. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9127-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9127-5_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-82190-5

  • Online ISBN: 978-94-010-9127-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics