Skip to main content

Einstein’s Reversal of the Boltzmann Principle and Particle Statistics

  • Chapter
Maximum-Entropy and Bayesian Methods in Science and Engineering

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 31-32))

  • 411 Accesses

Abstract

Instead of defining entropy as proportional to the logarithm of complexion function as in the Boltzmann principle, Einstein insisted that a complexion function should be defined in terms of the entropy. It is shown explicitly for the case of particle statistics that the Boltzmann principle is an approximation to Einstein’s reversal when the entropy is the Shannon-Jaynes entropy, i. e. a Shannon entropy in an appropriate physics context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Fowler, R.H., (1966). Statistical Mechanics, 2nd Ed. (1936), Cambridge University Press.

    Google Scholar 

  • Gamo, H., (1964). Thermodynamic Entropy of Partially Coherent Beams, J. Phys. Soc. Japan, 19, 1955–1961.

    Article  MATH  Google Scholar 

  • Jaynes, E.T., (1957a). Information Theory and Statistical Mechanics I, Phys. Rev. 106, 620–630.

    Article  MathSciNet  Google Scholar 

  • Jaynes, E.T., (1957b). Information Theory and Statistical Mechanics II, Phys. Rev. 108, 171–190.

    Article  MathSciNet  Google Scholar 

  • Jaynes, E.T., (1983). Papers on Probability, Statistics and Statistical Physics, edited by R.D. Rosenkrantz, D. Reidl Publ. Co.

    Google Scholar 

  • Khinchin, A.Y., (1960). Mathematical Foundations of Quantum Statistics, Greylock Press.

    MATH  Google Scholar 

  • Klauder, J.R. and Sudarshan, E.C.G., (1968). Fundamentals of Quantum Optics, W.A. Benjamin, Inc. (N.Y.), ch. 5.

    Google Scholar 

  • Pais, A., (1982). ‘Subtle is the Lord…’, Oxford University Press, ch.4.

    Google Scholar 

  • Rajagopal, A.K. and Teitler, S., (1987). Particle occupation factors without large numbers’ approximation, Physica in press.

    Google Scholar 

  • Shannon, C.E., (1948). A Mathematical Theory of Communication, Bell Syst. Tech. J. 27, 379–423.

    MathSciNet  MATH  Google Scholar 

  • Sommerfeld, A., (1956). Thermodynamics and Statistical Mechanics, Academic Press, N.Y.

    MATH  Google Scholar 

  • Tribus, M., (1987). An Engineer Looks at Bayes, these proceedings.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rajagopal, A.K., Teitler, S. (1988). Einstein’s Reversal of the Boltzmann Principle and Particle Statistics. In: Erickson, G.J., Smith, C.R. (eds) Maximum-Entropy and Bayesian Methods in Science and Engineering. Fundamental Theories of Physics, vol 31-32. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9054-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9054-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9056-8

  • Online ISBN: 978-94-010-9054-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics