Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 31-32))

Abstract

X-ray diffraction from a crystal enables the intensity of the Fourier transform of the scattering electron density to be measured. From these data we wish to deduce the atomic coordinates of the crystallised molecule. A crystal is an object which is translationally periodic, which allows a unit cell to be defined by three non-coplanar vectors a1, a2, a3, such that the density is the same after a translation by any of these vectors. Using the translation invariance, the Fourier transform F(k) = ∫ ρ(r) exp(2πir.k)d 3 r of the electron density ρ is then non-zero only at points k such thath i º k. ai- are integers for each i. The vectors {aj} reciprocal to {ai}, so that aj. aj = dij, form a basis for the space of k, usually termed reciprocal space, with k = Σihia. The points given by integral hi are called the reciprocal lattice. It is generally convenient to use fractional cell coordinates x, so that r = Σiciai, and hence r. k = x. h.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abels, J. G. (1974). Maximum entropy spectral analysis. Astr. Astrophys. Suppl, 15, 383–393.

    Google Scholar 

  • Banner, D. W., Bloomer, A. C., Petsko, G. A., Phillips, D. C. & Wilson, I. A. (1976). Atomic coordinates for Triose Phosphate Isomerase from chicken muscle. Biochemical and Biophysical Research Communications, 72, 146–155.

    Article  Google Scholar 

  • Bienenstock, A. & Ewald, P. P. (1962). Symmetry of Fourier Space. Acta Cryst, 15, 1253–1261.

    Article  MathSciNet  Google Scholar 

  • Blow, D. M. & Crick, F. H. C. (1959). The treatment of errors in the isomorphous replacement method. Acta Cryst, 12, 794–802.

    Article  Google Scholar 

  • Blow, D. M. & Rossmann, M. G. (1961). The single isomorphous replacement method. Acta Cryst, 14, 1195–1202. Correction. Acta Cryst, 15, 1060.

    Article  Google Scholar 

  • Blundell, T.L. & Johnson L.N. (1976). Protein Crystallography. New York: Academic Press.

    Google Scholar 

  • Bricogne, G. (1984). Maximum Entropy and the Foundations of Direct Methods. Acta Cryst, A40, 410–445.

    Article  Google Scholar 

  • Bryan, R. K. (1983). Maximum entropy in structural molecular biology - the fibre diffraction phase problem. Paper presented at the Third Workshop on Maximum Entropy and Bayesian Methods in Applied Statistics, University of Wyoming, August 1–4.

    Google Scholar 

  • Bryan, R. K. (1984). Application of the maximum entropy method in the fibre and crystallographic phase problems. Paper presented at the EMBO workshop on maximum entropy methods in the X-ray phase problem, Orsay, France.

    Google Scholar 

  • Bryan, R. K. & Banner, D. W. (1986). The maximum entropy method with native and single isomorphous derivative data. Submitted to Acta Cryst.

    Google Scholar 

  • Bryan, R. K., Bansal, M., Folkhard, W., Nave, C. & Marvin, D. A. (1983). Maximum entropy calculation of the electron density at 4Å resolution of Pf1 filamentous bacteriophage. Proc. Natl. Acad. Sci. USA, 80, 4728–4731.

    Article  Google Scholar 

  • Bryan, R. K. & Skilling, J. (1986). Maximum entropy image reconstruction from phaseless Fourier data. Optica Acta, 33, 287–299.

    Article  Google Scholar 

  • Collins, D. M. (1982). Electron density images from imperfect data by iterative entropy maximisation. Nature, 254, 49–51.

    Article  Google Scholar 

  • Crick, F. H. C. & Magdoff, B. S. (1956). The theory of the method of isomorphous replacement for protein crystals. Acta Cryst, 9, 901–908.

    Article  Google Scholar 

  • Gull, S. F. & Daniell, G. J. (1978). Image reconstruction from incomplete and noisy data. Nature, 272, 686–690.

    Article  Google Scholar 

  • Gull, S. F. & Skilling, J. (1984). The maximum entropy method. In Indirect Imaging, ed. J. A. Roberts, pp. 267–279. Cambridge: Cambridge University Press.

    Google Scholar 

  • Harker, D. (1956). The determination of the phases of the structure factors of non-centrosymmetric crystals by the method of double isomorphous replacement. Acta Cryst, 9, 1–9.

    Article  Google Scholar 

  • Harrison, S. C., Olson, A. J., Schutt, C. E., Winkler, F. K. & Bricogne, G. (1978). Tomato bushy stunt virus at 2.9Å resolution. Nature, 276, 368–373.

    Article  Google Scholar 

  • Hauptman, H. (1982). On integrating the techniques of direct methods and isomorphous replacement I. The theoretical basis. Acta Cryst, A38, 289–294.

    MathSciNet  Google Scholar 

  • Hendrickson, W. A. & Teeter, M. M. (1981). Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur. Nature, 290, 107–113.

    Article  Google Scholar 

  • Hogle, J. M., Chow, M. & Filman, D. J. (1985). Three-dimensional structure of poliovirus at 2.9Å resolution. Science, 229, 1358–1365.

    Article  Google Scholar 

  • Jaynes, E. T. (1968). Prior probabilities. IEEE Trans., SCC-4, 227–241.

    Google Scholar 

  • Jaynes, E. T. (1982). On the rational of maximum-entropy methods. Proc. IEEE, 70, 939–952.

    Article  Google Scholar 

  • Livesey, A. K. (1984). Paper presented at the EMBO workshop on maximum entropy methods in the X-ray phase problem, Orsay, France.

    Google Scholar 

  • Livesey, A. K. & Skilling, J. (1985). Maximum entropy theory. Acta Cryst, A41, 113–122.

    Google Scholar 

  • Navaza, J. (1986). The use of non-local constraints in maximum-entropy electron density reconstruction. Acta Cryst, A42, 212–223.

    Google Scholar 

  • Rossmann, M. G., et al (1985). Structure of a human common cold virus and functional relationship to other picornaviruses. Nature, 317, 145–153.

    Article  Google Scholar 

  • Shore J. E. & Johnson R. W. (1980). Axiomatic derivation of maximum entropy and the principle of minimum cross-entropy. IEEE Trans., IT-26, 26–37. Comments and corrections. IEEE Trans. IT-29, 942–943.

    MathSciNet  Google Scholar 

  • Skilling, J. (1986). Theory of Maximum Entropy Image Reconstruction. In Maximum Entropy and Bayesian Methods in Applied Statistics, Proceedings of the Fourth Maximum Entropy Workshop, University of Calgary, 1984, ed. James H. Justice, pp. 156–178. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Skilling, J. & Bryan, R. K. (1984). Maximum entropy image reconstruction: general algorithm. Mon. Not. R. astr. Soc, 211, 111–124.

    MATH  Google Scholar 

  • Wei, W. (1985). Application of the maximum entropy method to electron density determination. J. Appl. Cryst, 18, 442–445.

    Article  Google Scholar 

  • Wilkins, S. W. & Stuart, D. (1986). Statistical geometry. IV. Maximum-Entropy-Based Extension of Multiple Isomorphously Phased X-ray Data to 4Å Resolution for a-Lactalbumin. Acta Cryst, A42, 197–202.

    Google Scholar 

  • Wilkins, S. W., Varghese, J. N. & Lehmann, M. S. (1983). Statistical geometry. I. A self-consistent approach to the crystallographic inversion problem based on information theory. Acta Cryst, A39, 49–60.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bryan, R.K. (1988). Maximum Entropy and the Phase Problem in Protein Crystallography. In: Erickson, G.J., Smith, C.R. (eds) Maximum-Entropy and Bayesian Methods in Science and Engineering. Fundamental Theories of Physics, vol 31-32. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9054-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9054-4_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9056-8

  • Online ISBN: 978-94-010-9054-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics