Advertisement

A Consideration on the Changing Role of Mathematics in Ampère’s and Weber’s Electrodynamics

  • Salvo D’Agostino
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 213)

Abstract

In 1820 Andre Marie Ampère (1775 Lyon — 1836 Marseilles) coined the term électrodynamique to indicate that the new science of electric currents and magnets was part of the Newtonian program of a general science of forces and motions. Adopting the spirit of Ampère’s works, Gauss and Weber translated the French into Elektrodynamik and Helmholtz and Hertz also used this German term in their reinterpretation of Maxwell’s ideas. Conversely, the term “electromagnetism” appears to have originated with Oersted and, extensively used in Faraday’s and Maxwell’s work, remained the standard word in the Anglo-Saxon tradition. Following the German tradition, Lorentz and Einstein used elektrodynamik while most others theoretical physicists of the twentieth century preferred the English translation of the term, “electrodynamics”.

Keywords

Current Intensity Transversal Magnetism Absolute Unit Current Element Mechanical Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1.
    Ampère [1826] 10. Ampère [1921] 79.Google Scholar
  2. 2.
    This short rendering of Ampëre’s arguments is in Whittaker [1951] vol.I, 85, 86.Google Scholar
  3. 4.
    Ampère [1921] 79.Google Scholar
  4. 5.
    Ampère [1921] 79, note.Google Scholar
  5. 6.
    Ampère [1926] 161–194.Google Scholar
  6. 7.
    Ampère [1926] 8.Google Scholar
  7. 8.
    O’Rahilly [1965] Vol. 2, 523.Google Scholar
  8. 9.
    This is a view held by both Ampère and von Humbol. See Jungnickel & Mccormmach [1986] Vol. 1, 64.Google Scholar
  9. 10.
    A letter from Gauss to the Göttingen University Curator, 29 January 1833, a quotation in Jungnickel & McCormmach [1986] Vol. 1, 64.Google Scholar
  10. 11.
    Gauss [1867] Vol. V, pp. 293–304.Google Scholar
  11. 12.
    For a very incisive overview of Gauss’s theoretical and experimental contribution to magnetism: Jungnickel & McCormmach [1986] Vol. 1, 63–77.Google Scholar
  12. 13.
    Weber [1893] b) 6–18.Google Scholar
  13. 14.
    A rather extensive discussion of Weber’s life and work is in: Jungnickel & McCormmach [1986] a) 130–148; b) 72–79.Google Scholar
  14. 16.
    Weber [1846].Google Scholar
  15. 17.
    Weber [1846] Introduction, 34.Google Scholar
  16. 18.
    Weber [1846] 35–40. Therein Weber described this instrument in great detail.Google Scholar
  17. 19.
    Weber [1846] 79.Google Scholar
  18. 20.
    Weber [1846] 115 ff.Google Scholar
  19. 21.
    Weber [1846] 112 ff.Google Scholar
  20. 22.
    Weber [1846] 115 ff.Google Scholar
  21. 23.
    Weber [1846] 103 ff.Google Scholar
  22. 24.
    Weber [1846] 27–30, 133.Google Scholar
  23. 25.
    Weber [1846] 132–134.Google Scholar
  24. 26.
    Weber [1846] 135: “Diese drei Tatsachen sind zwar nicht unmittelbar durch die Erfahrung gegeben...sie hängen aber nit unmittelbar beobachteten Tatsachen so genau zusammen, daß sie fast gleiche Geltung als sie haben”.Google Scholar
  25. 27.
    Weber [1846] 134–135.Google Scholar
  26. 28.
    Weber [1846] 142.Google Scholar
  27. 29.
    Weber [1846] 54 ff. A modern rendering of Weber’s deduction is in Whittaker [1951] Vol. 1, pp. 83–88.Google Scholar
  28. 30.
    Weber [1846] 140–44.Google Scholar
  29. 31.
    Weber [1846] 44.Google Scholar
  30. 32.
    Weber [1846] 152; Weber [1851]; Weber [1848]; Weber [1893] b); Weber [1852].Google Scholar
  31. 33.
    Weber [1846]; Weber [1893] b) 157.Google Scholar
  32. 34.
    Weber [1848]; Weber [1893] b) 245–246.Google Scholar
  33. 35.
    Weber [1893] b) 157–207.Google Scholar
  34. 36.
    Weber [1851]; Weber [1893] b).Google Scholar
  35. 37.
    Weber [1852]; Weber [1893] b) 301–465.Google Scholar
  36. 38.
    Weber [1893] b) 321.Google Scholar
  37. 39.
    Weber [1846] 211.Google Scholar
  38. 40.
    Weber [1848] 245.Google Scholar
  39. 42.
    Weber [1852] 366.Google Scholar
  40. 43.
    Weber [1852] 366–67.Google Scholar
  41. 44.
    Weber [1852] 358.Google Scholar
  42. 45.
    Weber [1852] 368: “...ohne Kentnis der Geschwindigkeit die Reduktion der Gemessen Stromintensitäten, elektromotorischen Kräfte und Widerstände auf the bekannten Maasse der Mechanik nicht ausgeführt werden kann”.Google Scholar
  43. 46.
    Weber [1852] 368.Google Scholar
  44. 47.
    Weber & Kohlrausch [1856] 604–05.Google Scholar
  45. 48.
    Kohlrausch spoke of this experiment in the manuscript of a report to the Natural Science Society of Marburg dated 16 June 1852 [N.S.R source] 74). This method was the one tried by Rowland in his well-known experiment. See also Jun-gnickel & Mc Cormmack [1986] a) 145.Google Scholar
  46. 49.
    In 1873 Maxwell thought that the necessary velocity to obtain measurable effects was practically achievable (D’Agostino [1996] 41–42).Google Scholar
  47. 50.
    Weber, “Vorwort bei der öbergabe der Abhandlung: Elektrod. Maasbest. insbesondere Zurückßrung der Strömintensituats-Messungen auf Mechanische Maass” in: Weber [1856] 592, ff.Google Scholar
  48. 50a.
    Weber & Koholrausch, “Elektrodynamische Maasbestimmungen insbesondere Zurückfürung der Strömintensitäts-Messungen auf Mechanische Maass.” Submitted by Weber to the Saxon Soc. in 1855, in Weber [1893] b) 609–76.Google Scholar
  49. 51.
    Short versions of Weber’s argument are often reported in the secondary sources; for instance: Whittaker [1951] Vol 1, 201–208. Also in: Wiederkehr [1967] 140–141. Therefore I can be excused from reporting the full procedure.Google Scholar
  50. 54.
    Weber & Koholrausch [1856] 605.Google Scholar
  51. 55.
    Weber [1856] 595.Google Scholar
  52. 56.
    Kirchhoff, “Über die Bewegung der Elektrizität in Drähten”, [1857), in: Kirchhoff [1882] 131.Google Scholar
  53. 57.
    Weber, “Elektrtrodynamischen Massbestimmungen insbesondere elektrische Schwingungen”, in: Weber [1864).Google Scholar
  54. 58.
    Weber [1864] 157.Google Scholar
  55. 59.
    Weber & Koholrausch [1856] 607.Google Scholar
  56. 60.
    Weber & Koholrausch [1856] 607.Google Scholar
  57. 62.
    Maxwell, highly praises Ampère’s theory in is Treatise. See: Maxwell [1954] Part IV, Chap. III.Google Scholar
  58. 63.
    Weber’s remarks on Ampère are extensively quoted by Duhem [1921] 324.Google Scholar
  59. 64.
    Duhem [1921] 324.Google Scholar
  60. 65.
    Duhem [1921] 322.Google Scholar
  61. 66.
    Ampère [1826] 5.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Salvo D’Agostino
    • 1
  1. 1.Università “La Sapienza”RomaItaly

Personalised recommendations