Advertisement

A Comparison of the Meaning and Uses of Models in Mathematics and the Empirical Sciences

  • Patrick Suppes
Chapter
Part of the Synthese Library book series (SYLI, volume 3)

Abstract

Consider the following quotations:

‘A possible realization in which all valid sentences of a theory T are satisfied is called a model of T’ (Tarski [1953, p. 11]).

Keywords

Pure Mathematic Empirical Science Logical Type Linear Response Theory Particle Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, E. W. The foundations of rigid body mechanics and the derivation of its laws from those of particle mechanics. In L. Henkin, P. Suppes and A. Tarski (Eds.), The Axiomatic Method. Amsterdam: North-Holland Publishing Co., 1959.Google Scholar
  2. Arrow, K. J. Social Choice and Individual Values. (Cowles Commission Monograph 12 ) New York: Wiley, 1951.Google Scholar
  3. Bush, R. R., and Estes, W. K. (Eds.). Introduction in Studies in Mathematical Learning Theory. Stanford, Calif.: Stanford Univ. Press, 1959.Google Scholar
  4. Debreu, G. Theory of Value. (Cowles Foundation Monograph 17 ) New York: Wiley, 1959.Google Scholar
  5. Doob, J. L. Some problems concerning the consistency of mathematical models. In R. E. Machol (Ed.), Information and Decision Processes. New York: McGraw-Hill, 1960.Google Scholar
  6. Estes, W. K., and Suppes, P. Foundations of linear models. Ch. 8 in Bush, R. R., and Estes, W. K. (Eds.), Studies in Mathematical Learning Theory. Stanford, Calif.: Stanford Univ. Press, 1959.Google Scholar
  7. Hermes, H. Eine Axiomatisierung der allgemeinen Mechanik, Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, new series, 3 (1938), S. Hirzel, Leipzig, 48 pp.Google Scholar
  8. Khinchin, A. I. Statistical Mechanics. New York: Dover, 1949.Google Scholar
  9. Lindsay, R. B., and Margenau, H. Foundations of Physics. New York: Wiley, 1936.Google Scholar
  10. Noll, W. The foundations of classical mechanics in the light of recent advances in continuum mechanics. In L. Henkin, P. Suppes and A. Tarski (Eds.), The Axiomatic Method. Amsterdam: North-Holland Publishing Co., 1959.Google Scholar
  11. Rubin, H., and P. Suppes. Transformations of systems of relativistic particle mechanics. Pacific Journal of Mathematics, 4 (1954), pp. 563–601.Google Scholar
  12. Simon, H. A. Models of Man. New York: Wiley, 1957.Google Scholar
  13. Suppes, P. Introduction to Logic. Princeton: Van Nostrand, 1957.Google Scholar
  14. Suppes, P. Axioms for relativistic kinematics with or without parity. In L. Henkin, P. Suppes and A. Tarski (Eds.), The Axiomatic Method. Amsterdam: North-Holland Publishing Co., 1959.Google Scholar
  15. Tarski, A. A general method in proofs of undecidability. Ch. I in A. Tarski, A. Mostowski, and R. M. Robinson (Eds.), Undecidable Theories. Amsterdam: North-Holland Publishing Co., 1953.Google Scholar
  16. Tarski, A. Contributions to the theory of models. Indagationes Mathematicae, 16 (1954), pp. 572–588, and 17 (1955), pp. 56–64.Google Scholar
  17. Woodger, J. H. The Axiomatic Method in Biology. Cambridge, England: Cambridge Univ. Press, 1957.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, The Netherlands 1961

Authors and Affiliations

  • Patrick Suppes
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations