Advertisement

Charged Particle Diffusion by Violation of the Third Adiabatic Invariant

  • T. J. Birmingham
  • T. G. Northrop
  • C.-G. Fälthammar
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 10)

Abstract

An equation which describes statistically the motion of charged particles in response to fluctuating electric and magnetic fields is derived. The particles are assumed to be moving in a mirror-type magnetic geometry. In addition to a static magnetic field there are small superposed fields fluctuating randomly on such a time scale that the first and second adiabatic invariants, M and J, are conserved, but the third or flux invariant, Φ, is violated. By using second adiabatic theory a two-dimensional diffusion equation is obtained valid on a much longer time scale than that of the fluctuations. Elements of the diffusion tensor are time-space correlations of fluctuation-induced perturbations in the guiding center drifts. These drift perturbations are systematically derived and shown to reduce simply in various special cases.

Keywords

Field Line Diffusion Tensor Liouville Equation Adiabatic Invariant Phase Space Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. W. Dungey: 1963, Planetary Space Sci. 11, 591.ADSCrossRefGoogle Scholar
  2. [2]
    J. M. Cornwall: 1964, J. Geophys. Res. 69, 1251.ADSCrossRefGoogle Scholar
  3. [3]
    A. J. Dragt: 1961, J. Geophys. Res. 66, 1641.ADSCrossRefGoogle Scholar
  4. [4]
    D. G. Wentzel: 1961, J. Geophys. Res. #66, 359; 66, 363.ADSCrossRefGoogle Scholar
  5. [5]
    D. B. Chang and L. D. Pearlstein: 1965, J. Geophys. Res. 70, 3075.MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    C. F. Kennel and H. E. Petschek: 1966, J. Geophys. Res. 71, 1.ADSGoogle Scholar
  7. [7]
    R. I. Miller: (submitted to Phys. Rev.).Google Scholar
  8. [8]
    E. N. Parker: 1961, J. Geophys. Res. 66, 693.MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    P. J. Kellogg: 1959, Nature 183, 1295.ADSCrossRefGoogle Scholar
  10. [10]
    E. N. Parker: 1960, J. Geophys. Res. 65, 3117.ADSCrossRefGoogle Scholar
  11. [11]
    N. Herlofson: 1960, Phys. Rev. Letters 5, 414.ADSCrossRefGoogle Scholar
  12. [12]
    L. Davis, Jr. and D. B. Chang: 1962, J. Geophys. Res. 67, 2169.ADSzbMATHCrossRefGoogle Scholar
  13. [13]
    B. A. Tverskoy: 1964, Geomagnetism i Aeronomiya 4, 436 (English transl.: 1964, Geomagnetism and Aeronomy 4, 351).Google Scholar
  14. [14]
    J. W. Dungey: 1965, Space Sci. Rev. 4, 199.ADSCrossRefGoogle Scholar
  15. [15]
    J. W. Dungey, W. N. Hess, and M. P. Nakada: 1965, Space Sci. Rev. 5, 399; J. Geophys. Res. 70, 3529.Google Scholar
  16. [16]
    M. P. Nakada and G. D. Mead: 1965, J. Geophys. Res. 70, 4777.ADSCrossRefGoogle Scholar
  17. [17]
    C.-G. Fälthammar: 1965, J. Geophys. Res. 70, 2503.MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    C.-G. Fälthammar: 1966, J. Geophys. Res. 71, 1487.ADSGoogle Scholar
  19. [19]
    G. Haerendel: 1966, J. Geophys. Res. 71, 1875.ADSGoogle Scholar
  20. [20]
    J. B. Cladis: 1966, J. Geophys. Res. 71, 5019.ADSGoogle Scholar
  21. [21]
    L. Euler: 1769, Novi Commentarii Acad. Sci. Petropolitinae 14, 270; reprinted in Leonhardi Euleri Opera Omnia, Series II, Vol. 13 (Swiss Soc. for Natural Sci., 1955), p. 73. We are indebted to Dr. D. P. Stern for pointing out this reference to us.Google Scholar
  22. [22]
    T. G. Northrop and E. Teller: 1960, Phys. Rev. 117, 215.MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    D. P. Stern: 1967, J. Geophys. Res. 72, 3995.ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1968

Authors and Affiliations

  • T. J. Birmingham
    • 1
  • T. G. Northrop
    • 1
  • C.-G. Fälthammar
    • 2
  1. 1.Laboratory for Theoretical StudiesGoddard Space Flight CenterGreenbeltUSA
  2. 2.Royal Institute of TechnologyStockholmSweden

Personalised recommendations