Skip to main content

Ages of the Ca-Rich Achondrites

  • Conference paper

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 12))

Abstract

Mass-spectrometric measurements of He, Ne, and Ar in 25 eucrites, in 2 howardites, and in separated mineral fractions of 5 eucrites confirm Megrue’s observation that the feldspar in these meteorites has lost virtually all cosmogenic 3He and variable fractions of 21Nec. Eucrites do not contain detectable amounts of trapped He and Ne. The results show further that our small (~ 50 mg) ‘bulk’ samples of eucrites are often considerably richer or poorer in feldspar than the average norm of 36%. This is seen from the (3He/38Ar)c ratios which range from 2.3 to 19. A eucrite with average feldspar content should have a ratio of about 8. Unfortunately, without any information on the feldspar contents of the samples, no reliable radiation age can be calculated.

We have solved this dilemma by calculating (3He/38Ar)c as a function of the feldspar content, using the known production rates of 3Hec and 38Arc in the major elements. With this correlation, the apparent feldspar content of any sample can be estimated from its measured (3He/38Ar)c ratio. The apparent feldspar contents, in turn, are used to adjust 3He. Radiation ages are calculated with adopted production rates of 2.10 and 2.14 × 10−8 cm3 STPg−1 106 year−1 for eucrites and howardites.

The radiation ages range from 0.1 to 62 × 106 year with some evidence for grouping at about 5 and 11 − 106 year. The gross age-distribution is similar to that of ordinary chondrites, especially of the hypersthenes and amphoterites. Hence, the Ca-rich achondrites seem to come from the same parent bodies as the great majority of the chondrites, or from bodies with very similar orbital elements.

The gas-retention ages cannot be estimated very accurately. Even so, it appears quite certain that more than one-half of the U-He and K-Ar ages are strongly discordant. Among these cases, roughly one half of the K-Ar ages are 2 − 109 year or more older than the corresponding U, Th-He ages, with most of the K-Ar ages between 3 and 4 − 109 year. This strong discordance seems to speak in favour of a late reheating of the parent body.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. H. Hey, Catalogue of Meteorites, British Museum ( Natural History ), London (1966).

    Google Scholar 

  2. G. T. Prior, Mineral. Mag., 20 (1920) 51.

    Article  Google Scholar 

  3. B. Mason, Meteorites, Wiley, New York (1962).

    Google Scholar 

  4. B. Mason, Geoehim. Cosmochim. Acta, 31 (1967) 107.

    Article  ADS  Google Scholar 

  5. M. B. Duke, L. T. Silver, Geoehim. Cosmochim. Acta, 31 (1967) 1637.

    Article  ADS  Google Scholar 

  6. D. Heymann, E. Mazor, Geoehim. Cosmochim. Acta, 32 (1968) 1.

    Article  ADS  Google Scholar 

  7. G. H. Megrue, J. Geophys. Res., 71 (1966) 4021.

    ADS  Google Scholar 

  8. E. Mazor, E. Anders, Geoehim. Cosmochim. Acta, 31 (1967) 1441.

    Article  ADS  Google Scholar 

  9. P. Signer, H. E. Suess, in Earth Science and Meteoritics, Ed. by J. Geiss, E. D. Goldberg, North-Holland Pub. Co., Amsterdam (1963) p. 241.

    Google Scholar 

  10. E. L. Fireman, Geoehim. Cosmochim. Acta, 31 (1967) 1691.

    Article  ADS  Google Scholar 

  11. D. Heymann, E. Anders, Geoehim. Cosmochim. Acta, 31 (1967) 1793.

    Article  ADS  Google Scholar 

  12. M. W. Rowe, M. A. Van Dilla, E. C. Anderson, Geoehim. Cosmochim. Acta, 27 (1963) 983.

    Article  ADS  Google Scholar 

  13. H. Stauffer, J. Geophys. Res., 67 (1962) 2023.

    Article  ADS  Google Scholar 

  14. E. Vilcsek, H. Wänke, in Radioactive Dating, IAEA, Vienna (1963) p. 381.

    Google Scholar 

  15. H. Hintenberger, H. König, L. Schultz, H. Wänke, Z. Naturforsch., 192 (1964) 327.

    ADS  Google Scholar 

  16. P. Eberhardt, O. Eugster, J. Geiss, J. Geophys. Res., 70 (1965) 4427.

    Article  ADS  Google Scholar 

  17. H. König, H. Wänke, Z. Naturforsch., 14a (1959) 866.

    ADS  Google Scholar 

  18. R.S.Clark, M. W. Rowe, R. Ganapathy, P. K. Kuroda, Geoehim. Cosmochim. Acta, 31 (1967) 1605.

    Article  ADS  Google Scholar 

  19. H. Hamaguchi, G. W. Reed, A. Turkevich, Geoehim. Cosmochim. Acta, 12 (1957) 337.

    Article  ADS  Google Scholar 

  20. J. W. Morgan, J. Lovering, J. Geophys. Res., 69 (1964) 1989.

    Article  ADS  Google Scholar 

  21. J. F. Nix, P. K. Kuroda. Unpublished.

    Google Scholar 

  22. E. Anders, Science, 138 (1962) 431.

    Article  ADS  Google Scholar 

  23. J. R. Arnold, Astrophys. J., 141 (1965) 1548.

    Article  ADS  Google Scholar 

  24. R. A. Fish, G. G. Goles, E. Anders, Astrophys. J., 132 (1960) 243.

    Article  ADS  Google Scholar 

  25. E. Anders, Space Sci. Rev., 3 (1964) 583.

    Article  ADS  Google Scholar 

  26. D. Heymann, Icarus, 6 (1967) 189.

    Article  ADS  Google Scholar 

  27. A. Turkevich, E. J. Franzgrote, J. H. Patterson, Science, 158 (1967) 633.

    Article  ADS  Google Scholar 

  28. A. Turkevich, E. J. Franzgrote, J. H. Patterson, Surveyor VI, A preliminary report; NASA SP-166 (1968) 109.

    Google Scholar 

  29. E. Anders, J. R. Arnold, Science, 149 (1965) 1494.

    Article  ADS  Google Scholar 

  30. H. C. Urey, H. Craig, Geoehim. Cosmochim. Acta, 4 (1953) 36.

    Article  ADS  Google Scholar 

  31. B. Mason, H. B. Wiik, Am. Museum Novitates, No. 2273 (1966) 1.

    Google Scholar 

  32. B. Mason, Am. Museum Novitates, No. 2223 (1965) 1.

    Google Scholar 

  33. J. Zähringer, Geoehim. Cosmochim. Acta, 32 (1968) 209.

    Article  ADS  Google Scholar 

  34. T. Kirsten, D. Krankowsky, J. Zähringer, Geoehim. Cosmochim. Acta, 21 (1963) 13.

    Article  ADS  Google Scholar 

  35. J. Geiss, D. C. Hess, Astrophys. J., 127 (1958) 224.

    Article  ADS  Google Scholar 

  36. P. Eberhardt, D. C. Hess, Astrophys. J., 131 (1960) 38.

    Article  ADS  Google Scholar 

  37. P. Eberhardt, J. Geiss, H. Graf. Unpublished.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

Heymann, D., Mazor, E., Anders, E. (1969). Ages of the Ca-Rich Achondrites. In: Millman, P.M. (eds) Meteorite Research. Astrophysics and Space Science Library, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-3411-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-3411-1_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3413-5

  • Online ISBN: 978-94-010-3411-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics