Skip to main content

On the Formation of Chondrules and Metal Particles by ‘Shock Melting’

  • Conference paper
Meteorite Research

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 12))

Abstract

A study of the Ramsdorf meteorite has shown quite clearly that this meteorite was highly altered by partial melting and rapid cooling, probably produced by shock waves (Begemann and Wlotzka). The silicates of this meteorite are transformed into a more or less continuous intergrowth of euhedral olivines and pyroxenes with a glassy groundmass, which also contains small dispersed droplets of troilite and nickel iron. This structure is exactly the same as found inside certain types of chondrules in many chondrites. It seems likely that a dispersion of this partly shock-molten meteorite into droplets would yield spherules consisting of silicate crystals in a glassy groundmass, i.e. chondrules.

A similar concept of chondrule formation has been proposed by Urey, and also by Fredriksson and Ringwood. The collision of the primary objects postulated by Urey to form chondrites would also yield the shock energy for melting and chondrule formation. The observation in Ramsdorf of a shock-formed silicate structure similar to that in porphyritic chondrules strengthens the feasibility of Urey’s hypothesis and of Fredriksson and Ringwood’s mechanism for chondrule formation. A sudden escape of volatiles as the means to disrupt the molten rock into droplets, as conceived by Fredriksson and Ringwood, does not seem necessary, as acceleration by the collision energy may do the same.

One may even speculate that the nickel-iron particles of chondrites were also formed by shock melting of pre-existing metal grains. In Ramsdorf we find rounded particles of nickel iron which apparently have been molten. They show an increasing Ni-content towards their rim, produced by direct rapid non-equilibrium crystallization of the metal out of the melt (Begemann and Wlotzka), and not by solid-state diffusion of Ni as in the taenite-kamacite transformation in iron meteorites. A dispersion of this melt into free drops may disturb this crystallization and yield separate grains of low and of high Ni-content according to the point of interruption and mode of distribution. Hence, it may be possible to produce the taenite particles in chondrites and their M-shaped Ni- concentration profiles during the rapid cooling process which also formed the partly glassy silicate chondrules. The long cooling times as derived by the diffusion model (Wood) are then not required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. C. Sorby, Proc. Roy. Soc. London, 13 (1864) 333.

    Google Scholar 

  2. G. Tschermak, Sitzber. Akad. Wiss. Wien., Math.-Naturw. Kl., I, 78 (1878) 580.

    Google Scholar 

  3. B. Doss, Neues Jahrb. Mineral. Geol. Palaeontol., 1 (1892) 71.

    Google Scholar 

  4. W. Wahl, Z. Anorg. Allgem. Chem., 69 (1910) 52.

    Google Scholar 

  5. A. E. Ringwood, Geochim. Cosmochim. Acta, 24 (1961) 159.

    Article  ADS  Google Scholar 

  6. K. Fredriksson, Trans. N.Y. Acad. Sci. Ser. II, 25 (1963) 756.

    Google Scholar 

  7. G. Kurat, Geochim. Cosmochim. Acta, 31 (1967) 491.

    Article  ADS  Google Scholar 

  8. H. C. Urey, Astrophys. J., 124 (1956) 623.

    Article  ADS  Google Scholar 

  9. P. Partsch, Die Meteoriten oder vom Himmel gefallenen Stein- und Eisenmassen im k.K. Hof- Mineralien-Kabinette zu Wien, Kaulfuss, Prandel u. Comp., Vienna (1843).

    Google Scholar 

  10. A. Brezina, Jahrb. K. K. Geol. Reichsanstalt Vienna, 35 (1885) 151.

    Google Scholar 

  11. S. Meunier, ‘Météorites’, in Encyclopédie chimique, vol. II, 2, Dunod, Paris (1884).

    Google Scholar 

  12. G. A. Daubree, Compt. Rend. 116 (1893) 345.

    Google Scholar 

  13. E. Cohen, Meteoritenkunde, Heft II, E. Schweizerbart, Stuttgart (1903).

    Google Scholar 

  14. H. E. Suess, Z. Elektrochem., 53 (1949) 237.

    Google Scholar 

  15. B. Ju. Levin, Chem. Erde, 19 (1957) 286.

    Google Scholar 

  16. J. A. Wood, Geochim. Cosmochim. Acta, 26 (1962) 739.

    Article  ADS  Google Scholar 

  17. J. A. Wood, Icarus, 2 (1963) 152.

    Article  ADS  Google Scholar 

  18. H. E. Suess, in Isotopic and Cosmic Chemistry, Ed. by H. Craig, S. L. Miller, and G. J. Wasserburg, North-Holland Publ. Co., Amsterdam (1963), Ch. 25.

    Google Scholar 

  19. G. Tschermak, Sitzber. Akad. Wiss. Wien, Math.-Naturw. Kl., II, 71 (1875) 661.

    Google Scholar 

  20. G. A. Daubree, Etudes synthétiques de géologie expérimentale, Paris (1879).

    Google Scholar 

  21. H. E. Suess, H. Wanke, F. Wlotzka, Geochim. Cosmochim. Acta, 28 (1964) 595.

    Article  ADS  Google Scholar 

  22. G. A. Daubree, Expériences synthétiques relatives aux météorites, Dunod, Paris (1868) p. 68.

    Google Scholar 

  23. F. Rinne, Neues Jahrb. Mineral. Geol. Palaeontol 2 (1895) 229.

    Google Scholar 

  24. K. Fredriksson, A. E. Ringwood, Geochim. Cosmochim. Acta, 21 (1963) 639.

    Article  ADS  Google Scholar 

  25. F. Begemann, F. Wlotzka, Geochim. Cosmochim. Acta, in press.

    Google Scholar 

  26. B. Mason, Geochim. Cosmochim. Acta, 27 (1963) 1011.

    Article  ADS  Google Scholar 

  27. K. Keil, K. Fredriksson, J. Geophys. Res., 69 (1964) 3487.

    Article  ADS  Google Scholar 

  28. W. R. Van Schmus, J. A. Wood, Geochim. Cosmochim. Acta, 31 (1967) 747.

    Article  ADS  Google Scholar 

  29. G. Tschermak, Die mikroskopische Beschaffenheit der Meteoriten, Translated by J. A. Wood, and E. M. Wood, Smithsonian Contrib. Astrophys., 4 (1964) 137.

    ADS  Google Scholar 

  30. G. P. Merrill, ‘Composition and Structure of Meteorites’, U.S. Nat. Museum, Bull., No. 149 (1930).

    Google Scholar 

  31. W. R. Van Schmus, Geochim. Cosmochim. Acta, 31 (1967) 2027.

    Article  ADS  Google Scholar 

  32. B. Mason, Science, 148 (1965) 943.

    Article  ADS  Google Scholar 

  33. A. M. Reid, K. Fredriksson, in Researches in Geochemistry, Ed. by P. H. Abelson, Wiley, New York, vol. II (1967), p. 170.

    Google Scholar 

  34. W. Otting, J. Zähringer, Geochim. Cosmochim. Acta, 31 (1967) 1949.

    Article  ADS  Google Scholar 

  35. K. Marti, Earth Planetary Sci. Letters, 2 (1967) 193.

    Article  ADS  Google Scholar 

  36. J. Zähringer, Earth Planetary Sci. Letters, 1 (1966) 379.

    Article  ADS  Google Scholar 

  37. S. N. Tandon, J. T. Wasson, ‘Indium Variations in a Metamorphic Suite of L-Group Chondrites’, Univ. Calif., Los Angeles (1968).

    Google Scholar 

  38. M. Quijano-Rico, H. Wänke, Paper 13, in this conference p. 132.

    Google Scholar 

  39. H. E. Suess, H. Wänke, J. Geophys. Res., 72 (1967) 3609.

    Article  ADS  Google Scholar 

  40. H. C. Urey, T. Mayeda, Geochim. Cosmochim. Acta, 17 (1959) 113.

    Article  ADS  Google Scholar 

  41. S. J. B. Reed, Nature, 204 (1964) 374.

    Article  ADS  Google Scholar 

  42. J. A. Wood, Nature, 208 (1965) 1085.

    Article  ADS  Google Scholar 

  43. J. A. Wood, Icarus, 6 (1967) 1.

    Article  ADS  Google Scholar 

  44. R. Vogel, Z. Anorg. Allgem. Chem., 142 (1925) 193.

    Article  Google Scholar 

  45. C. H. Desch, ‘Alloys of iron and nickel’. First Report of Alloy Steels Research Committee, Sect. V (1936) p. 63.

    Google Scholar 

  46. M. Hansen, Der Aufbau der Zweistofflegierungen, J. Springer, Berlin (1936).

    Google Scholar 

  47. S. O. Agrell, J. V. R. Long, R. E. Ogilvie, Nature, 198 (1963) 749.

    Article  ADS  Google Scholar 

  48. F. Wlotzka, Geochim. Cosmochim. Acta, 27 (1963) 419.

    Article  ADS  Google Scholar 

  49. G. Derge, A. R. Kommel, Am. J. Sci., 34 (1937) 203.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

Wlotzka, F. (1969). On the Formation of Chondrules and Metal Particles by ‘Shock Melting’. In: Millman, P.M. (eds) Meteorite Research. Astrophysics and Space Science Library, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-3411-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-3411-1_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3413-5

  • Online ISBN: 978-94-010-3411-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics