Skip to main content

Plasma Drifts in the Auroral Ionosphere Derived from Barium Releases

  • Conference paper
Earth’s Magnetospheric Processes

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 32))

Abstract

Barium cloud data on plasma drifts in the auroral ionosphere are reviewed. The convection is directed essentially westward before 2200 MLT and eastward at later night hours; this is opposite to the convection on the polar cap. The west and southward components of the electric field are found to be positively correlated with each other. The correlation is more pronounced in a nonrotating frame of reference. This result and the observed ratios of both field components indicate a dominantly magnetospheric origin of the correlation. Ordering of drift velocities according to typical geomagnetic situations shows the extension of corotation up to the auroral zone during quiet periods. During mildly disturbed periods the typical auroral zone convection pattern shows up with small magnitudes of E⋱(5–l 5 mV m-1). The growth phase of substorms is characterized by fast westward flows in the evening sector and the region of the westward electrojet by south-easterly motions with speeds of typically 1 km s-1. Close to the evening bulge of the plasmasphere northwestward directed motions were found suggesting a deformation process at work. During a poleward expansion of the auroral oval the plasma drifted southeastward, essentially opposite to the movements of the auroral arcs. This may be understood in terms of the reconnection of magnetic field lines in the tail. Plasma drifts in the westward traveling surge of a substorm are slow and toward the south, but speed up and turn westward after leaving the region of strong auroral precipitation. A model is proposed according to which’ the westward traveling surge is a result of a reconnection of tail field lines upon which a southeastward directed flow on the polar cap is reversed to a westward one. The existence of strong upward flowing magnetic field aligned currents from the surge is implied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akasofu, S.-L: 1969, Nature 221, 1020.

    Article  ADS  Google Scholar 

  • Akasofu, S.-L, and Meng, C.-L: 1969, J. Geophys. Res. 74, 293.

    Article  ADS  Google Scholar 

  • Akasofu, S.-L, Chapman, S., and Meng, C.-L: 1965, J. Atmospheric Terrestr. Phys. 27, 1275.

    Article  ADS  Google Scholar 

  • Akasofu, S.-L, Eather, R. H., and Bradbury, J. N.: 1969, Planetary Space Sci. 17, 1409.

    Article  ADS  Google Scholar 

  • Aubry, M. P.: 1972, this volume, p. 357.

    Google Scholar 

  • Axford, W. L: 1967, B. M. McCormac (ed.), in Aurora and Air glow, Reinhold Publishing Corporation, New York, 499.

    Google Scholar 

  • Boström, R.: 1964, J. Geophys. Res. 69, 4983.

    Article  ADS  MATH  Google Scholar 

  • Cain, J. C., Hendricks, S., Daniels, W. E., and Jensen, D. C.: 1968, ‘Computation of the Main Geomagnetic Field From Spherical Harmonic Expansions’, Data Users’ NoteNSSDC 68-11, NASA GSFC, 41.

    Google Scholar 

  • Carpenter, D. L.: 1966, J. Geophys. Res. 71, 693.

    ADS  Google Scholar 

  • Carpenter, D. L.: 1970a, J. Geophys. Res. 75, 3837.

    Article  ADS  Google Scholar 

  • Carpenter, D. L.: 1970b, private communication.

    Google Scholar 

  • Cauffman, D. P. and Gurnett, D. A.: 1971, J. Geophys. Res. 76, 6014.

    Article  ADS  Google Scholar 

  • Chappell, C. R.: 1972, this volume p. 280.

    Google Scholar 

  • Chappell, C. R., Harris, K. K., and Sharp, G. W.: 1970, J. Geophys. Res. 75, 3848.

    Article  ADS  Google Scholar 

  • Coleman, Jr., P. J. and McPherron, R. L.: 1970, B. M. McCormac (ed.), m Particles and Fields in the Magnetosphere, Reidel Publishing Company, Dordrecht, Holland, p. 171.

    Google Scholar 

  • Cummings, W. D., Barfield, J. N., and Coleman, Jr., P. J.: 1968, J. Geophys. Res. 73, 6687.

    Article  ADS  Google Scholar 

  • Fahleson, U. V.: 1972, this volume, p. 223.

    Google Scholar 

  • Föppl, H., Haerendel, G., Haser, L., Lüst, R., Melzner, F., Meyer, B., Neuss, H., Rabben, H.-H., Rieger, E., Stöcker, J., and Stoffregen, W.: 1968, J. Geophys. Res. 73, 21.

    Article  ADS  Google Scholar 

  • Fukushima, N.: 1968, Rep. Ionosphere Space Res. Japan, 22, 173.

    Google Scholar 

  • Haerendel, G.: 1972, in E. R. Dyer (General ed.), Solar-Terrestrial Physics/1970, Part IV, D. Reidel Publishing Company, Dordrecht, Holland, p. 87.

    Google Scholar 

  • Haerendel, G. and Lüst, R.: 1970, in B. M. McCormac (ed.), Particles and Fields in the Magnetosphere, D. Reidel Publishing Company, Dordrecht, Holland, p. 213.

    Chapter  Google Scholar 

  • Heppner, J. P., Stolarik, J. D., and Wescott, E. M.: 1971, J. Geophys. Res. 76, 6028.

    Article  ADS  Google Scholar 

  • Kelley, M. C., Starr, J. A., and Mozer, F. S.: 1971, J. Geophys. Res. 76, 5269.

    Article  ADS  Google Scholar 

  • Kim, H. Y. and Kim, J. S.: 1963, J. Atmospheric Terrestr. Phys. 25, 481.

    Article  ADS  Google Scholar 

  • McUwain, C. E.: 1972, this volume, p. 268.

    Google Scholar 

  • McPherron, R. L.: 1970, J. Geophys. Res. 75, 5592.

    Article  ADS  Google Scholar 

  • Mozer, F. S.: 1971, J. Geophys. Res. 76, 7595.

    Article  ADS  Google Scholar 

  • Mozer, F. S. and Serlin, R.: 1969, J. Geophys. Res. 74, 4739.

    Article  ADS  Google Scholar 

  • Nishida, A.: 1968a, J. Geophys. Res. 73, 1795.

    Article  ADS  Google Scholar 

  • Nishida, A.: 1968b, J. Geophys. Res. 73, 5549.

    Article  ADS  Google Scholar 

  • Nishida, A.: 1971, ‘Deformation of the Dusk-side Plasmapause’, preprint.

    Google Scholar 

  • Paschmann, G.: 1971, private communication.

    Google Scholar 

  • Rieger, E.: 1971, Z. Geophys. 37, 795.

    Google Scholar 

  • Wescott, E. M., Stolarik, J. D., and Heppner, J. P.: 1969, J. Geophys. Res. 74, 3469.

    Article  ADS  Google Scholar 

  • Wescott, E. M., Stolarik, J. D., and Heppner, J. P.: 1970, B. M. McCormac (ed.), in Particles and Fields in the Magnetosphere, D. Reidel Publishing Company, Dordrecht, Holland, p. 229.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

Haerendel, G. (1972). Plasma Drifts in the Auroral Ionosphere Derived from Barium Releases. In: McCormac, B.M. (eds) Earth’s Magnetospheric Processes. Astrophysics and Space Science Library, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-2896-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-2896-7_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-2898-1

  • Online ISBN: 978-94-010-2896-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics