Skip to main content

One- and Two-Dimensional Computational Problems Associated with Interferometry

  • Conference paper
Book cover Infrared Detection Techniques for Space Research

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 30))

  • 105 Accesses

Abstract

It is almost unnecessary to point out that computational problems, especially in interferometry spectroscopy, are becoming of greater and greater importance. The computer now is really a part of the experiment and its influence is felt in a variety of applications. At first it is often used for data acquisition, then for the pretreatment, and in the end for the scientific exploitation of the data. But we think that it is more important to point out the very rapid improvements of the computers’ technology and especially of the algorithms they use. These two aspects allow us not only to solve present problems but also to look at these problems from a different and new point of view. For example some deconvolution and new spectroscopy techniques are possible only because of powerful or well-suited computing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Connes, P. and Michel, G.: 1970 ‘Real-time Computer for Fourier Spectroscopy’, Aspen International Conference on Fourier Spectroscopy.

    Google Scholar 

  2. Connes, J.: 1970, ‘Computing Problems in Fourier Spectroscopy’, 1970 Aspen International Conference on Fourier Spectroscopy.

    Google Scholar 

  3. Standish, C. J.: 1967, Two Remarks on the Reconstruction of Sampled Non-band Limited Functions, IBM J., Nov.

    Google Scholar 

  4. Morven Gentleman, W.: 1968, Bell System Tech. J. 47, No. 6.

    Google Scholar 

  5. Hoffman, J. E.: 1968, AFCRL Instrumentation Paper No. 146.

    Google Scholar 

  6. Bosomworth, D. R. and Gush, H. P.: 1965, Can. J. Phys. 43, 740.

    Google Scholar 

  7. Delouis, H.: 1968, Thèse de 3ème Cycle, Paris.

    Google Scholar 

  8. Biraud, Y.: 1969,’ spectroscopic par transformation de Fourier en infrarouge lointain’, IRS/10. Rapport interne.

    Google Scholar 

  9. Biraud, Y.: 1969,’ solution nouvelle au problème de déconvolution en présence de bruit’, Comptes-Rend. du Deuxième Colloque du Groupe d’Etude du Traitement du Signal. Nice, Mai.

    Google Scholar 

  10. Arsac, J.: 1961, Transformation de Fourier et théorie des distributions, Dunod, Paris.

    MATH  Google Scholar 

  11. Jacquinot, P. and Roizen-Dossier, B.: 1964, Progr. Optics 3, 31.

    Google Scholar 

  12. Barnes, Casper W.: 1966, J. Opt. Soc. Am. 56, No. 5.

    Google Scholar 

  13. Scheidecker, J.-P.: 1968, Thèse de Doctorat de 3ème Cycle, Paris.

    Google Scholar 

  14. Williams, R. A. and Chang, W. S.: 1966, J. Opt. Soc. Am. 56, No. 2.

    Google Scholar 

  15. Frieden, B. R.: 1967, J. Opt. Soc. Am. 57, No. 58.

    Google Scholar 

  16. Slepian, D. and Pollak, H. O.: Jan. 1961 and July 1962, ‘Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty’, Three parts in Bell System Tech. J.

    Google Scholar 

  17. MacPhie, R. H.: 1962, Tech. Report, No. 58, EERL, University of Illinois, Urbana, Ill.

    Google Scholar 

  18. Ville, J. A.: 1956, Cables et transmissions, p. 1-44.

    Google Scholar 

  19. Wolter, H.: 1964, Progr. Optics 1, 202.

    Google Scholar 

  20. Harris, J. L.: 1964, J. Opt. Soc. Am. 54, No. 7.

    Google Scholar 

  21. Robaux, O. and Roizen-Dossier, B.: 1970, Part 1: Optica Acta, 17, No. 10; Part 2: Optica Acta 17, No. 11.

    Google Scholar 

  22. Biraud, Y.: 1969, Astron. Astrophys. 1, 124.

    ADS  Google Scholar 

  23. Hay-Chee, Frank Wong: ‘A Study and Evaluation of Biraud’s Deconvolution Algorithm’, M. of S. Thesis to be submitted.

    Google Scholar 

  24. Hershel, R. S.: 1970, Positive Restoration of Non-Coherent Object Scenes Degraded by Diffraction and Noise, Optical Sciences Center, The University of Arizona, Tucson, Ariz.

    Google Scholar 

  25. Frieden, B. R.: 1971, Tech. Rep. No. 67, Optical Sciences Center, The University of Arizona, Tucson, Ariz.

    Google Scholar 

  26. Frieden, B. R.: 1971, Maximum Entropy: a First Principle for Obtaining positive Restorations, Optical Sciences Center, The University of Arizona, Tucson, Ariz.

    Google Scholar 

  27. Hershel, R. S.: 1970, ‘Numerical Restoration of Object Scenes’, Optical Sciences Center, The University of Arizona, Tucson, Ariz.

    Google Scholar 

  28. Jansson, P. A.: 1970, J. Opt. Soc. Am. 60, No. 2.

    Google Scholar 

  29. Jansson, P. A., Hunt, R. H., and Plyler, E. K.: 1970, J. Opt. Soc. Am. 60, No. 5.

    Google Scholar 

  30. Dolby, R. M.: 1958, Proc. Phys. Soc. 73, 81.

    Article  ADS  Google Scholar 

  31. Walsh, J. L.: 1923, Am. J. Math. 45, 5.

    Article  MATH  Google Scholar 

  32. Gebbie, H. A.: 1970, ‘Walsh Functions and the Experimental Spectroscopist’, Applications of Walsh functions, Proc. Symp. NRL, Washington D.C.

    Google Scholar 

  33. Gibbs, J. E. and Gebbie, H. A.: 1969, Nature 224.

    Google Scholar 

  34. Koenig, M. and Zolesio, J.-P.: 1970, ‘Les fonctions de Walsh’, Comptes-Rendus du Colloque sur le traitement du Signal, Faculté de Nice.

    Google Scholar 

  35. Harmuth, H. F.: 1970, Transmission of Information by Orthogonal Functions, Springer-Verlag.

    Google Scholar 

  36. Harmuth, H. F.: 1968, IEEE Trans. Information Theory IT 14, No. 3.

    Google Scholar 

  37. Pichler, F.: 1970, ‘Walsh functions and Optimal Linear Systems’, Applications of Walsh functions, Proc. Symp., NRL, Washington DC.

    Google Scholar 

  38. Welch, R.: 1970, ‘Walsh Functions and Hadamard Matrices’, Applications of Walsh functions, Proc. Symp. NRL, Washington D.C.

    Google Scholar 

  39. Shanks, J. L.: 1969, IEEE Trans. Comput., C 18.

    Google Scholar 

  40. Bates, R. H. T., Napier, P. J., and Chang, Y. P.: 1970, Electron. Letters 6, No. 23.

    Google Scholar 

  41. Ibbet, R. N., Aspinall, D., and Grainger, J. F.: 1968, Appl. Opt. 7, 1089.

    Google Scholar 

  42. Decker, Jr., J. A. and Harwit, M. O.: 1968, Appl. Opt. 7, No. 11.

    Google Scholar 

  43. Sloane, N. J. A., Fine, T., Phillips, P. G., and Harwit, M.: 1969, Appl. Opt. 8, No. 10.

    Google Scholar 

  44. Sloane, N. J. A.: 1970, Aspen International Conference on Fourier Spectroscopy.

    Google Scholar 

  45. Phillips, P. G., Harwit, M., and Sloane, N. J. A.: 1970, ‘A new multiplexing Spectrometer with Large Throughput’, Aspen International Conference on Fourier spectroscopy.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

Biraud, Y. (1972). One- and Two-Dimensional Computational Problems Associated with Interferometry. In: Manno, V., Ring, J. (eds) Infrared Detection Techniques for Space Research. Astrophysics and Space Science Library, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-2885-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-2885-1_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-2887-5

  • Online ISBN: 978-94-010-2885-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics