Skip to main content

Set theory from Cantor to Cohen

  • Chapter
  • 225 Accesses

Abstract

Set theory has dutifully performed the tasks that its founder Georg Cantor intended it to do and many more than Cantor could even dream of. In the present historical survey we have tried to trace some of the ideas and problems that were developed. Considering the scope of the lectures we had to restrict our attention to a modest part of set theory. We have choosen to follow set theory from Cantor via Zermelo, Fraenkel, Von Neumann, Gödel to Cohen and we hoped in this way to be faithful to the spirit of Cantor. As a consequence many subjects had to be excluded, among them other variants of axiomatic set theory (e.g. Quine’s systems), the theory of types, topology, descriptive set theory (projective sets, etc.), hierarchy theory and many other subjects. Owing to the explosion in axiomatic set theory, following Cohen’s fundamental papers, we could only superficially touch the recent results. A reader interested in these new methods and results should turn to literature.

Was beweisbar ist, soll in der Wissenschaft nicht ohne Beweis geglaubt werden.

R. Dedekind

Das Wesen der Mathematik liegt in ihrer Freiheit.

G. Cantor

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Ackermann, W. Die Widerspruchsfreiheit der allgemeinen Mengenlehre. Math. Ann. 114 (1937) pp. 305–315.

    Article  MathSciNet  Google Scholar 

  2. Addison, J. W. Some consequences of the axiom of constructibility. Fund. Math. 46 (1959) pp. 337–357.

    MathSciNet  MATH  Google Scholar 

  3. Ballauf, L. Review of G. Cantor, Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Zeitschrift für exakte Philosophie 12 (1883) pp. 375–395.

    Google Scholar 

  4. Bell, E. Men of mathematics, II London (1937).

    Google Scholar 

  5. Bell, J. L. and A. B. Slomson. Models and ultraproducts. Amsterdam (1969).

    Google Scholar 

  6. Benacerraf, P. and H. Putnam (ed.). Philosophy of mathematics, selected readings. Englewood Cliffs (1964).

    Google Scholar 

  7. Bernays, P. A system of axiomatic set theory. J.S.L. 2 (1937) pp. 65–77, J.S.L. 6 (1941) pp. 1–17, J.S.L. 7 (1942) pp. 65–89, J.S.L. 8 (1943) pp. 89–106, J.S.L. 13 (1948) pp. 65–79, J.S.L. 19 (1954) pp. 81–96.

    MATH  Google Scholar 

  8. Bernays, P. and A. A. Fraenkel. Axiomatic set theory. Amsterdam (1958).

    Google Scholar 

  9. Bernays, P. Unendlichkeitsschemata in der axiomatischen Mengenlehre. In Essays on the foundations of mathematics. Jerusalem (1961).

    Google Scholar 

  10. Bernstein, F. Über die Reihe der transfiniten Ordnungszahlen. Math. Ann. 60 (1905) pp. 187–193.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bernstein, F. Zum Kontinuumproblem. Math. Ann. 60 (1905) pp. 463–464.

    Article  MathSciNet  MATH  Google Scholar 

  12. Beth, E. W. Semantic construction of intuitionistic logic. Mededelingen der Kon. Ned. Ak.v. Wet. 18 (1956) no. 11.

    Google Scholar 

  13. Beth, E. W. The foundations of mathematics. Amsterdam (1959).

    Google Scholar 

  14. Bockstaele, P. Het intuïtionisme bij de Franse wiskundigen. Brussel (1949).

    Google Scholar 

  15. Boffa, M. Graphes extensionnels et axiome d’universalité. Zeitschr. für Math. Logik und Grundl. der Math. 14 (1968) pp. 329–334.

    Article  MathSciNet  MATH  Google Scholar 

  16. Boffa, M. Les ensembles extraordinaires. Bull. Soc. Math. Belgique 20 (1968) pp. 3–15.

    MathSciNet  MATH  Google Scholar 

  17. Bois-Reymond, P. du. Über asymptotische Werte, infinitäre Approximationen und infinitäre Auflösung von Gleichungen. Math. Ann. 8 (1875) pp. 363–414.

    Article  MathSciNet  Google Scholar 

  18. Bolzano, B. Paradoxien des Unendlichen. Leipzig (1851), Darmstadt (1964).

    Google Scholar 

  19. Borel, E. Leçons sur la théorie des fonctions. Paris (1898).

    Google Scholar 

  20. Borel, E. Quelques remarques sur les principes de la théorie des ensembles. Math. Ann. 60 (1905) pp. 194–195.

    Article  MathSciNet  MATH  Google Scholar 

  21. Brouwer, L. E. J. Over de grondslagen der wiskunde. (On the foundations of mathematics). Amsterdam (1907). An English translation is to appear in the collected works.

    Google Scholar 

  22. Brouwer, L. E. J. Beweis der Invarianz der Dimensionszahl. Matth. Ann. 70 (1910) pp. 305–313.

    Google Scholar 

  23. Brouwer, L. J. E. Zur Begründung der intuitionistischen Mathematik I. Math. Ann. 93 (1925) pp. 244–257.

    Article  MathSciNet  Google Scholar 

  24. Brouwer, L. J. E. Zur Begründung der intuitionistischen Mathematik III. Math. Ann. 96 (1926) pp. 451–489.

    Article  MathSciNet  MATH  Google Scholar 

  25. Cantor, G. Gesammelte Abhandlungen, edited by E. Zermelo. Berlin (1932). Reprinted Hildesheim (1966).

    Google Scholar 

  26. Cantor, G. Über ein neues und allgemeines Kondensationsprinzip der Singularitäten von Funktionen. Math. Ann. 19 (1882) pp. 588–594, also in [25].

    Article  MathSciNet  Google Scholar 

  27. Church, A. Alternatives to Zermelo’s assumption. Trans Am. Math. Soc. 29 (1927) pp. 178–208.

    MathSciNet  MATH  Google Scholar 

  28. Cohen, P. J. A minimal model for set theory. Bull. Am. Math. Soc. 69 (1963) pp. 537–540.

    Article  MATH  Google Scholar 

  29. Cohen, P. J. The independence of the continuum hypothesis I, II. Proc. Nat. Ac. Sci. USA 50 (1963) pp. 1143–1148, 51 (1964) pp. 105–110.

    Article  Google Scholar 

  30. Cohen, P. J. Set theory and the continuum hypothesis. New York (1966).

    Google Scholar 

  31. Dalen, D. van. A note on spread cardinals. Compositio Mathematica 20 (1968) pp. 21–28.

    MathSciNet  MATH  Google Scholar 

  32. Davis, M. The undecidable. N.Y. (1965).

    Google Scholar 

  33. Dedekind, R. Was sind und sollen die Zahlen? Brunswick (1888). Also in [34].

    Google Scholar 

  34. Dedekind, R. Gesammelte Mathematische Werke III. Braunschweig (1932).

    Google Scholar 

  35. Felgner, U. Models of ZF-set theory. Springer lecture notes (1971).

    Google Scholar 

  36. Fraenkel, A. A. Der Begriff‘definit’ und die Unabhängigkeit des Auswahlaxioms. Sitzungsberichte der Preussische Akademie der Wissenschaften, physikalische Klasse (1922) pp. 253–257. Also in Van Heyenoort [61] pp. 284–289.

    Google Scholar 

  37. Fraenkel, A. A. ZU den Grundlagen der Cantor-Zermeloschen Mengenlehre. Math. Ann. 86 (1922) pp. 230–237.

    Article  MathSciNet  MATH  Google Scholar 

  38. Fraenkel, A. A. Einleitung in die Mengenlehre. Berlin (1928).

    Google Scholar 

  39. Fraenkel, A. A. and Y. Bar-Hillel. Foundations of set theory. Amsterdam (1958).

    Google Scholar 

  40. Frege, G. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle (1879).

    Google Scholar 

  41. Frege, G. Die Grundlagen der Arithmetik, eine logisch-mathematische Untersuchung über den Begriff der Zahl. Breslau (1884), Hildesheim (1961). English translation by J. L. Austin. Harper Torchbooks (1960).

    Google Scholar 

  42. Frege, G. Die Grundgesetze der Arithmetik. Jena (1893, 1903), Hildesheim (1962).

    Google Scholar 

  43. Frege, G. Begriffsschrift und andere Aufsätze, ed. I. Angelelli. Hildesheim (1964).

    Google Scholar 

  44. Galilei, G. Discorsi e Dimostrazioni Matematiche intorno a due nuove scienze. Leiden (1638). English translation in Dover Publications, N.Y. German translation in Ostwald’s Klassiker Nr. 11.

    Google Scholar 

  45. Gauss, C. F. Gesammelte Abhandlungen, Bd. VIII. Berlin (1932).

    Google Scholar 

  46. Gentzen, G. Beweisbarheit und Unbeweisbarheit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie. Math. Ann. 119 (1943) pp. 140–161.

    Article  MathSciNet  MATH  Google Scholar 

  47. Gödel, K. The consistency of the axiom of choice and the generalized continuum hypothesis. Proc. Nat. Ac. Science 24 (1938) pp. 556–557.

    Article  Google Scholar 

  48. Gödel, K. Consistency proof for the generalized continuum hypothesis. Proc. Nat. Ac. Science 25 (1939) pp. 220–224.

    Article  Google Scholar 

  49. Gödel, K. The consistency of the continuum hypothesis. Princeton (1940).

    Google Scholar 

  50. Gödel, K. What is Cantor’s continuum problem? Am. Math. Monthly 54 (1947) pp. 515–525. Also in [6] (revised and expanded).

    Article  Google Scholar 

  51. Grattan-Guiness, I. An unpublished paper by Georg Cantor: Prinzipien einer Theorie der Ordnungstypen. Erste Mitteilung. Acta Mathematica 124 (1970) pp. 65–107.

    Article  MathSciNet  Google Scholar 

  52. Grzegorczyk, A. A plausible formal interpretation of intuitionistic logic. Indag. Math. 26 (1964) pp. 596–601.

    MathSciNet  Google Scholar 

  53. Hájek, P. Modelle der Mengenlehre in denen Mengen gegebener gestalt existieren. Zeitschr. für Math.-Logik und Grundl. der Math. 11 (1965) pp. 103–115.

    Article  MATH  Google Scholar 

  54. Hamel, G. Ein Basis aller Zahlen und die unstetige Lösungen der Funktionalgleichung \( f(x + y) = f(x) + f(y).\). Math. Ann. 60 (1905) pp. 459–462.

    Google Scholar 

  55. Hartogs, F. Über das Problem der Wohlordnung. Math. Ann. 76 (1915) pp. 438–443.

    Article  MathSciNet  MATH  Google Scholar 

  56. Hausdorff, F. Der Potenzbegriff in der Mengenlehre. Jahresberichte der DMV 13 (1904) pp. 570 ff.

    Google Scholar 

  57. Hausdorff, F. Grundzüge einer Theorie der geordnete Mengen. Math. Ann. 64 (1908) pp. 443–505.

    MathSciNet  Google Scholar 

  58. Hausdorff, F. Nachgelassene Schriften 11. Stuttgart (1969).

    Google Scholar 

  59. Helmholtz, H. Zählen und Messen. In Philosophische Aufsätze, E. Zeller zu 50-jährigen Doktorjubiläum gewidmet. Leipzig (1887) p. 76.

    Google Scholar 

  60. Hessenberg, G. Grundbegriffe der Mengenlehre. Abhandlungen der Fries’schen Schule (1906).

    Google Scholar 

  61. Heyenoort, J. van. From Frege to Gödel, a source-book in mathematical Logic 1879–1931. Cambridge, Mass. (1967).

    Google Scholar 

  62. Hilbert, D. Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Kongress zu Paris 1900. Archiv der Math. und Physik, 3rd series 1 (1901) pp. 44–63, 213–237. Also in [65] p. 290 ff.

    Google Scholar 

  63. Hilbert, D. Über das Unendliche. Math. Ann. 95 (1926) pp. 161–190. Also in Van Heyenoort [61] pp. 367–392.

    Google Scholar 

  64. Hilbert, D. Die Grundlagen der Mathematik. Abh. a.d. Math. Sem. d. Hamb. Universität 6 (1928) pp. 65–85. Also in Van Heyenoort [61] pp. 464–479.

    Google Scholar 

  65. Hilbert, D. Gesammelte Abhandlungen Vol. 3. Berlin (1935).

    Google Scholar 

  66. Jensen, R. Modelle der Mengenlehre. Berlin (1967).

    Google Scholar 

  67. Kelley, J. L. General topology. Princeton (1955).

    Google Scholar 

  68. Kleene, S. C. Introduction to meta-mathematics. Amsterdam-New York (1952).

    Google Scholar 

  69. Klimovsky, G. The axiom of choice and the existence of maximal abelian subgroups. Rev. Un. Math. Argentina 20 (1962) pp. 267–287.

    MathSciNet  MATH  Google Scholar 

  70. Kneebone, G. T. Mathematical logic and the foundations of mathematics. London (1963).

    Google Scholar 

  71. König, J. Zum Kontinuumproblem. Math. Ann. 60 (1905) pp. 177–180. Berichtigung ibid p. 462.

    Article  MathSciNet  MATH  Google Scholar 

  72. König, J. Über die Grundlagen der Mengenlehre und das Kontinuumproblem. Math. Ann. 61 (1906) pp. 156–160. Also in Van Heyenoort [61] pp. 145–149.

    Article  Google Scholar 

  73. Kowalewski, G. Bestand und Wandel. München (1950).

    Google Scholar 

  74. Kripke, S. Semantical Analysis of intuitionistic logic I. In Formal systems and recursive functions. Amsterdam (1965) pp. 92–130.

    Google Scholar 

  75. Kronecker, L. Über den Zahlbegriff. Journal für die reine und angewandte Mathematik 101 (1887) pp. 337–355.

    Article  Google Scholar 

  76. Kronecker, L. Jahresbericht der Deutsche Mathematiker-Vereinigung 1 (1890) pp. 23–25.

    Google Scholar 

  77. Kuratowski, K. and A. Mostowski. Set theory. (1968). Warszawa-Amsterdam

    Google Scholar 

  78. Lebesgue, H. Contribution a l’étude des correspondances de M. Zermelo. Bull. de la Soc. Math. de France 35 (1907) pp. 202–212.

    MathSciNet  MATH  Google Scholar 

  79. Leibniz, G. Mathematische Schriften III, ed. Gerhardt (1855, 1856) pp. 536, 563.

    Google Scholar 

  80. Lévy, A. Axiom schemata of strong infinity in axiomatic set theory. Pac. J. Math. 10 (1960) pp. 223–238.

    MATH  Google Scholar 

  81. Levy, P. Remarques sur un théorème de Paul Cohen. Revue de Métaphysique et de Morale 69 (1964) pp. 88–95.

    Google Scholar 

  82. Mahlo, P. Über linéaire transfinite Mengen. Leipziger Berichte math. phys. Klasse 63 (1911) pp. 187–225.

    Google Scholar 

  83. Mendelson, E. The axiom of Fundierung and the axiom of choice. Arch. Math. Logik und Grundlagenforschung 4 (1958) pp. 65–70.

    Article  MathSciNet  MATH  Google Scholar 

  84. Mendelson, E. Introduction to mathematical logic (especially Ch. 4). Princeton (1964).

    Google Scholar 

  85. Meschkowski, H. Probleme des Unendlichen. Werk und Leben Georg Cantors. Braunschweig (1967).

    Google Scholar 

  86. Mirimanoff, D. Les antinomies de Russell et de Burali-Forti et le problème fondemental de la théorie des ensembles. L’enseignement mathématique 19 (1917) pp. 37–52.

    Google Scholar 

  87. Monk, D. Introduction to set theory. N.Y. (1969).

    Google Scholar 

  88. Montague, R. Semantical closure and non-finite axiomatizability I. In Infinitistic Methods. Warszawa (1961).

    Google Scholar 

  89. Morse, A. A theory of sets. N.Y. (1965).

    Google Scholar 

  90. Mostowski, A. Über die Unabhängigkeit des Wohlordnungssatzes vom Ordnungsprinzip. Fund. Math. 32 (1939) pp. 201–252.

    Google Scholar 

  91. Mostowski, A. Thirty years of foundational studies. Oxford (1966).

    Google Scholar 

  92. Mostowski, A. Constructible sets with applications. Warszawa-Amsterdam (1969)

    Google Scholar 

  93. Mycielski, J. and H. Steinhaus. A mathematical axiom contradicting the axiom of choice. Bull. Ac. Polon. Sci. Ser. Sci. Math. Astr. Phys. 10 (1962) pp. 1–3.

    MathSciNet  MATH  Google Scholar 

  94. Mycielski, J. On the axiom of determinateness. Fund. Math. 53 (1964) pp. 205–224.

    MathSciNet  MATH  Google Scholar 

  95. Neumann, J. von. Zur Einführung der transfiniten Zahlen. Acta literarum ac scientiarum Regiae Universitatis Hungariae Francisco Josephina. Sectio scientiarum math. 1 (1923) pp. 199–208. Also in Van Heyenoort [61] pp. 346–354.

    Google Scholar 

  96. Neumann, J. von. Eine Axiomatisierung der Mengenlehre. Journal für die reine und angewandte Math. 154 (1925) pp. 219–240. Also in Van Heyenoort [61] pp. 393–413.

    Article  Google Scholar 

  97. Neumann, J. von. Eine Axiomatisierung der Mengenlehre. Math. Zeitschrift 27 (1928) pp. 669–752.

    Article  MATH  Google Scholar 

  98. Neumann, J. von. Über eine Widerspruchsfreiheitsfrage in der axiomatischen Mengenlehre. Journ. für die reine und angewandte Math. 160 (1929) pp. 227–241. Also in [99] pp. 494–508

    Article  MATH  Google Scholar 

  99. Neumann, J. von. Collected works. Vol. I. Oxford (1961).

    Google Scholar 

  100. Noether, E., ed. J. Cavaillès. Briefwechsel Cantor-Dedekind, Paris (1937). Also in J. Cavaillès. Philosophie mathématique. Paris (1962).

    Google Scholar 

  101. Peano, G. Démonstration de l’intégrabilité des équations différentielles ordinaires. Math. Ann. 37 (1890) pp. 182–288.

    Article  MathSciNet  Google Scholar 

  102. Peano, G. Formulaire de mathématiques. Vol. 1, 2, 3, 4. Turin (1895-1903).

    Google Scholar 

  103. Peano, G. Additione. Revista del Mathematica 8 (1906) pp. 143–157.

    Google Scholar 

  104. Peano, G. Sulla definizione di funzione. Atté della Reale Accademia dei lincei. Classe di scienze fisiche, mathematische e naturali 20 (1911) pp. 3–5.

    Google Scholar 

  105. Pierce, C. S. On the algebra of logic, a contribution to the philosophy of notation. Am. J. Math. 7 (1885) pp. 180–202.

    Article  Google Scholar 

  106. Pinl, M. Kollegen in einer dunklen Zeit. Jahresberichte Deutsche Mathematiker Vereinigung 71 (1969) pp. 167–228.

    MathSciNet  MATH  Google Scholar 

  107. Poincaré, H. Science et méthode. Paris (1908). English translation in Dover Publications.

    Google Scholar 

  108. Poincaré, H. Sechs Vorträge über ausgewählte Gegenstände aus der reinen Mathematik und mathematischen Physik. Leipzig (1910)

    Google Scholar 

  109. Proceedings of the AMS. Summer institute on axiomatic set theory (1967) UCLA (1971).

    Google Scholar 

  110. Proceedings of the International Congress of Mathematicians, ed. I. G. Petrovsky. Moscow (1966).

    Google Scholar 

  111. Quine, W. V. O. Set theory and its logic. Cambridge, Mass (1963).

    Google Scholar 

  112. Richard, J. Les principes des mathématiques et le problème des ensembles. Revue générale des sciences pures et appliquées 16 (1905) pp. 541. Also in van Heyenoort [61] pp. 142–144.

    Google Scholar 

  113. Rieger, L. Chechosiovak Math. J. 7 (1957) pp. 323–357.

    MathSciNet  Google Scholar 

  114. Robinson, R. M. The theory of classes, a modification of Von Neumann’s system. J.S.L. 2 (1937) pp. 29–32.

    MATH  Google Scholar 

  115. Rogers, H. jr. Theory of recursive functions and effective computability. New York (1967).

    Google Scholar 

  116. Rosser, J. B. Simplified independence Proofs. Boolean valued models of set theory. N.Y. (1969).

    Google Scholar 

  117. Rubin H. and J. E. Rubin. Equivalents of the axiom of choice. Amsterdam (1963).

    Google Scholar 

  118. Rubin, J. E. Set theory for mathematicians. Amsterdam (1967).

    Google Scholar 

  119. Russell, B. On some difficulties in the theory of transfinite numbers and order types. Proc. of the London Math. Soc. 4 (1907) pp. 29–53.

    Article  Google Scholar 

  120. Schilp, ed. The philosophy of Bertrand Russell. New York (1944).

    Google Scholar 

  121. Schoenfliess, A. Entwicklung der Mengenlehre und ihrer Anwendungen. Leipzig und Berlin, (1900) 2nd ed. (1913).

    Google Scholar 

  122. Schoenfliess, A. Die Krisis in Cantor’s Mathematischem Schaffen. Acta Mathematica 50 (1927) pp. 1–23.

    Article  MathSciNet  Google Scholar 

  123. Schoenfliess, A. Zur Erinnerung an Georg Cantor. Jahresberichte DMV 31 (1922) pp. 97–106.

    Google Scholar 

  124. Schröder, E. Nova Acta Leopoldina 71 (1898).

    Google Scholar 

  125. Schütte, K. Beweistheorie. Berlin (1960).

    Google Scholar 

  126. Scott, D. Prime ideal theorems for rings, lattices and Boolean algebras. Bull. Am. Soc. 60 (1954) pp. 390.

    Google Scholar 

  127. Scott, D. The notion of rank in set-theory. Summaries of Talks — Summer Institute for Symbolic Logic, Cornell University (1957).

    Google Scholar 

  128. Scott, D. Measurable cardinals and constructible sets. Bull. Ac. Polon. Sci. Sér. Sci. Math. Astr. Phys. 9 (1961) pp. 521–524.

    MATH  Google Scholar 

  129. Scott, D. A proof of the independence of the continuum hypothesis. Math. Systems Theory 1 (1967) pp. 89–111.

    Article  MathSciNet  MATH  Google Scholar 

  130. Sheperdson, J. Inner models for set theory I, II, III. J.S.L. 16 (1951) pp. 161–190, J.S.L. 17 (1952) pp. 225–237, J.S.L. 18 (1953) pp. 145–167.

    Google Scholar 

  131. Shoenfield, J. R. Mathematical logic. Reading, Mass (1967).

    Google Scholar 

  132. Sierpinski, W. Sur une hypothèse de M. Lusin. Fund. Math. 25 (1935) pp. 132–135.

    Google Scholar 

  133. Sierpinski, W. L’hypothèse généralisé du continu et l’axiome du choix. Fund. Math. 34 (1947) pp. 1–5.

    MathSciNet  MATH  Google Scholar 

  134. Skolem, Th. Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre. Matematikerkongressen i Helsingfors den kw]4–7 Juli 1922. Den femte Skandinawiska matematiker-kongressen, Redogörelse. Also in [136] pp. 137–152 and van Heyenoort [61] pp. 290–301.

    Google Scholar 

  135. Skolem, Th. Einige Bemerkungen zu der Abhandlung von E. Zermelo: “Über die Definitheit in der Axiomatik”. Fund. Math. 15 (1930) pp. 337–341. Also in (136] pp. 275–279.

    MATH  Google Scholar 

  136. Skolem, Th. Über die Nichtcharakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen. Fund. Math. 23 (1934) pp. 150–161. Also in [136] pp. 355–366.

    Google Scholar 

  137. Skolem, Th. Selected works in logic, ed. J. E. Fenstad. Oslo (1970).

    Google Scholar 

  138. Solovay, R. 2ℵ0 can be anything it ought to be. In The theory of models. Amsterdam (1965) pp. 433–434.

    Google Scholar 

  139. Souslin, N. Problème 3. Fund. Math. 1 (1920) p. 223.

    Google Scholar 

  140. Specker, E. Verallgemeinerte Kontinuumshypothese und Auswahlaxiom. Archiv der Math. 5 (1954) pp. 332–337.

    Article  MathSciNet  MATH  Google Scholar 

  141. Specker, E. Zur Axiomatik der Mengenlehre (Fundierungs-und Auswahlaxiom). Zeitschrift für math. Logik u. Grundlagen d. Math. 3 (1957) pp. 173–210.

    Article  MathSciNet  MATH  Google Scholar 

  142. Steinitz, E. Theorie der algebraischen Körper, Berlin, 1930.

    Google Scholar 

  143. Tarski, A. and A. Lindenbaum. Communication sur les recherches de la théorie des ensembles. Comptes rendus Soc. Sci. et Lettres de Varsovie, Classe III 19 (1926) pp. 299–330.

    Google Scholar 

  144. Tarski, A. Über unerreichbare Kardinalzahlen. Fund. Math. 30 (1938) pp. 68–89.

    MATH  Google Scholar 

  145. Tarski, A. Some problems and results relevant to the foundation of set theory. Proc. 1960 Intern. Congr. Logic Math. and Phil. Science. Stanford (1962) pp. 125–135.

    Google Scholar 

  146. Tarski, A. and J. H. Keisler. From accessible to inaccessible cardinals. Fund. Math. 53 (1964) pp. 117–199.

    MathSciNet  Google Scholar 

  147. Troelstra, A. S. Principles of intuitionism. Berlin (1969).

    Google Scholar 

  148. Ulam, S. Zur Masstheorie in der allgemeinen Mengenlehre. Fund. Math. 15 (1930) pp. 140–150.

    Google Scholar 

  149. Vitali, G. Sul problema della misura dei gruppi di punti di una retta. Bologna (1905).

    Google Scholar 

  150. Wang, Hao. A survey of mathematical logic. Peking-Amsterdam (1963).

    Google Scholar 

  151. Wittgenstein, L. Bemerkungen über die Grundlagen der Mathematik. Oxford (1956) (with English translation).

    Google Scholar 

  152. Young, W. H. and G. C. Young. Review of “The theory of functions of a real variable and the theory of Fourier series” by E. W. Hobson. Math. Gazette 14 (1928) pp. 98–104.

    Article  Google Scholar 

  153. Zermelo, E. Beweis das jede Menge wohlgeordnet werden kann. Math. Ann. 59 (1904) pp. 514–516. Also in van Heyenoort [61] p. 139.

    Article  MathSciNet  MATH  Google Scholar 

  154. Zermelo, E. Neuer Beweis für die Möglichkeit einer Wohlordnung. Math. Ann. 65 (1908) pp. 107–128. Also in [61] pp. 183–198.

    Article  MATH  Google Scholar 

  155. Zermelo, E. Untersuchungen über die Grundlagen der Mengenlehre I, Math. Ann. 65 (1908) pp. 261–281. Also in van Heyenoort [61] pp. 199–215.

    Article  MathSciNet  MATH  Google Scholar 

  156. Zermelo, E. Über den Begriff der Definitheit in der Axiomatik. Fund. Math. 19 (1929) pp. 339–344.

    Google Scholar 

  157. Zermelo, E. Über Grenzzahlen und Mengenbereiche. Fund. Math. 16 (1930) pp. 29–47.

    MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Wolters-Noordhoff Publishing, Groningen, The Netherlands

About this chapter

Cite this chapter

Van Dalen, D. (1972). Set theory from Cantor to Cohen. In: Sets and integration An outline of the development. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-2718-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-2718-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-2720-5

  • Online ISBN: 978-94-010-2718-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics