Skip to main content

Equilibrium Constants of Reversible Reactions in Solution

  • Chapter
Quantum Theory of Chemical Reactivity
  • 79 Accesses

Abstract

We are now in a position to present the existing state of the quantum theory of balanced reactions in solution. We have just examined the part played by conformations in such reactions. Moreover we have demonstrated in Section 1 of Chapter II that, for a given conformation of the substances present, the equilibrium constant depends on six factors:

  1. (a)

    the ratio of the distribution functions;

  2. (b)

    the variation Δε v of the vibration energy of the nuclei at absolute zero;

  3. (c)

    the variation Δε l of the energy of localised bonds;

  4. (d)

    the variation Δε d of the energy of delocalised bonds;

  5. (e)

    the variation Δε n·l of the energy of interaction between unbonded atoms;

  6. (f)

    and the variation Δε s(T) of the solvation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. After: E. Mulder and I. Muller Rodloff, Ann. 517 (1935) 134; E. Muller and E. Hertel, Ann. 554 (1943) 213; 555 (1944) 157; E. Muller and H. Pfauz, Ber. 74 (1941) 1051–1075.

    Google Scholar 

  2. See on this subject: D. D. Eley and M. G. Evans, Trans. Far. Soc. 34 (1938) 1112.

    Google Scholar 

  3. M. Born, Z. Phys. 1 (1920) 45.

    CAS  Google Scholar 

  4. W. M. Latimer, K. S. Pitzer, and C. M. Slansky, J. Chem. Phys. 7 (1939) 108.

    CAS  Google Scholar 

  5. B. Noyes, J. Am. Chem. Soc. 86 (1962) 513; 86 (1964) 971.

    Google Scholar 

  6. E. Glueckhauf, Trans. Far. Soc. 60 (1964) 572.

    Google Scholar 

  7. R. Stokes, J. Am. Chem. Soc. 86 (1964) 979.

    CAS  Google Scholar 

  8. G. J. Hoijtink, E. de Boer, P. H. Van der Meij, and W. P. Weijland, Rec. Trav. Chim. Pays-Bas 75 (1956) 487.

    CAS  Google Scholar 

  9. D. D. Eley and M. G. Evans, Trans. Far. Soc. 34 (1938) 1112.

    Google Scholar 

  10. H. A. Laitinen and S. Wawzonek, J. Chem. Soc. 64 (1942) 1765.

    CAS  Google Scholar 

  11. S. Wawzonek and H. A. Laitinen, J. Chem. Soc. 64 (1942) 2365.

    CAS  Google Scholar 

  12. I. Bergman, Trans. Far. Soc. 50 (1954) 289.

    Google Scholar 

  13. G. J. Hoijtink, J. Van Schooten, E. de Boer, and W. I. Aalbersberg, Rec. Trav. Chim. Pays-Bas 73 (1954) 355.

    CAS  Google Scholar 

  14. Delabray, New Experimental Methods in Electrochemistry, Interscience, New York, 1954. On the theory of polarography one can also read: J. E. Page, Quart. Rev. 6 (1952) 262; I. M. Kolthoff and J. J. Lingane, Polarography, Interscience, New York, 1952; L. Meites, Polarographic Techniques, Interscience, New York, 1955; G. W. C. Milner, The Principle and Application of Polarography and other Electroanalytical Processes, Longmans Green, New York, 1957; H. W. Nürnberg, Angew. Chem. 72 (1960) 433. A table of semiwave potentials is to be found in: K. Schwabe, Polarographie und chemische Konstitution organischer Verbindungen, Ac. Verlag, Berlin, 1957.

    Google Scholar 

  15. A. Maccoll, Nature 163 (1949) 178.

    CAS  Google Scholar 

  16. A. Pullman, B. Pullman, and C. Berthier, Bull. Soc. Chim. Fr. 17 (1950) 591.

    Google Scholar 

  17. G. J. Hoijtink and J. Van Schooten, Rec. Trav. Chim. Pays-Bas 71 (1952) 1089; 72 (1953) 691, 903.

    CAS  Google Scholar 

  18. G. J. Hoijtink, Rec. Trav. Chim. Pays-Bas 74 (1955) 1525.

    CAS  Google Scholar 

  19. F. A. Matsen, J. Chem. Phys. 24 (1956) 602

    CAS  Google Scholar 

  20. R. M. Hedges and F. A. Matsen, J. Chem. Phys. 28 (1958) 950.

    CAS  Google Scholar 

  21. I. Jano, Thèses Sciences, Paris 1965.

    Google Scholar 

  22. J. Hoyland and L. Goodman, J. Chem. Phys. 36 (1962) 12, 21.

    Google Scholar 

  23. W. E. Wentworth and R. S. Becker, J.A.C.S. 84 (1962) 4263.

    CAS  Google Scholar 

  24. R. S. Becker and W. E. Wentworth, J.A.C.S. 85 (1963) 2210.

    Google Scholar 

  25. A. Watson and F. Matsen, J. Chem. Phys. 18 (1950) 1305.

    CAS  Google Scholar 

  26. I. Bergman, Trans. Far. Soc. 50 (1954) 829; 52 (1956) 690.

    CAS  Google Scholar 

  27. S. Basu and R. Bhattacharya, J. Chem. Phys. 25 (1956) 596.

    CAS  Google Scholar 

  28. J. I. Fernandez-Alonso and R. Domingo, Nature 179 (1957) 829.

    CAS  Google Scholar 

  29. P. H. Given, Nature 181 (1958) 1001.

    CAS  Google Scholar 

  30. H. Lund, Acta. Chem. Scand. 11 (1957) 1323.

    CAS  Google Scholar 

  31. G. J. Hoijtink, Rec. Trav. Chim. Pays-Bas 77 (1958) 555.

    CAS  Google Scholar 

  32. W. I. J. Aalbersberg and E. L. Mackor, Trans. Far. Soc. 56 (1960) 1351.

    CAS  Google Scholar 

  33. N. S. Hush and J. A. Pople, Trans. Far. Soc. 51 (1955) 600.

    CAS  Google Scholar 

  34. A. Streitwieser, Molecular Orbital Theory for Organic Chemists, Wiley, 1961, p. 183.

    Google Scholar 

  35. G. Anthoine, G. Coppens, J. Nasielski, and E. Van der Donckt, Bull. Soc. Chim. Belg. 73 (1964) 65.

    Google Scholar 

  36. S. Basu and J. N. Chandhuri, Nature 180 (1957) 1473.

    CAS  Google Scholar 

  37. R. Zahradnik and K. Bocek, Coll. Czech. Chem. Comm. 26 (1961) 1733.

    CAS  Google Scholar 

  38. R. W. Schmid and E. Heilbrunner, Helv. Chim. Acta 37 (1954) 1453.

    CAS  Google Scholar 

  39. G. Klopman and J. Nasielski, Bull. Soc. Chim. Belge 70 (1961) 490.

    CAS  Google Scholar 

  40. G. Giacometti, La ricerca scientifica 27 (1957) 1146.

    CAS  Google Scholar 

  41. G. Giacometti, La ricerca scientifica 27 (1957) 1489.

    CAS  Google Scholar 

  42. G. J. Hoijtink, E. de Boer, P. H. Van der Meij, and W. P. Weijland, Rec. Trav. Chim. Pays-Bas 75 (1956) 487.

    CAS  Google Scholar 

  43. T. Fueno, T. Ree and H. Eyring, J. Am. Chem. Soc. 63 (1959) 1940.

    CAS  Google Scholar 

  44. G. E. K. Branch and M. Calvin, The Theory of Organic Chemistry, Prentice Hall, 1941, p. 305.

    Google Scholar 

  45. M. E. Diatkina and J. Syrkin, Acta Physiocochim. URSS 21 (1946) 921.

    Google Scholar 

  46. M. G. Evans, Trans. Far. Soc. 42 (1946) 113.

    CAS  Google Scholar 

  47. E. Berliner, J. Am. Chem. Soc. 68 (1946) 49.

    CAS  Google Scholar 

  48. C. J. P. Sprint, Chem. Week 43 (1947) 544.

    Google Scholar 

  49. G. B. Bonino and M. Rolla, Atti. Accad. naz. Lincei, Mem. Classe Sci. Fis. Mat. e nat., 4 (1948) 25, 273.

    CAS  Google Scholar 

  50. P. G. Carter, Trans. Far. Soc. 45 (1949) 597.

    CAS  Google Scholar 

  51. M. G. Evans, J. Gergely, and J. de Heer, Trans. Far. Soc. 45 (1949) 312.

    CAS  Google Scholar 

  52. M. G. Evans and J. de Heer, Trans. Far. Soc. 47 (1951) 801; Quart. Revs. 4 (1950) 94.

    CAS  Google Scholar 

  53. V. Gold, Trans. Far. Soc. 46 (1950) 109.

    CAS  Google Scholar 

  54. J. Deschamps, Thèse Sciences, Bordeaux 1956.

    Google Scholar 

  55. R. Le Bihan, Thèse 3° cycle Sciences, Paris 1965.

    Google Scholar 

  56. A. Pullman, Cont. Rend. Acad. Sci. 253 (1961) 1210.

    CAS  Google Scholar 

  57. A. Pullman, Tetrahedron 19 (1963) 441.

    CAS  Google Scholar 

  58. M. E. Pullman and C. P. Colowick, Fed. Proc. 12 (1953) 255.

    Google Scholar 

  59. M. E. Pullman, A. San Pietro, and C. P. Colowick, J. Biol. Chem. 206 (1954), 129.

    CAS  Google Scholar 

  60. Vennesland, The Physical Chemistry of Enzymes, 1955, p. 240.

    Google Scholar 

  61. B. M. Anderson and N. O. Kaplan, J. Biol. Chem. 234 (1959) 1226.

    CAS  Google Scholar 

  62. N. O. Kaplan and M. M. Ciotti, J. Biol. Chem. 221 (1956) 823.

    CAS  Google Scholar 

  63. G. Del Ré, J. Chem. Soc. (1958) 4031; Electronic Aspects of Biochemistry, Ac. Press, New York, 1964, p. 221.

    Google Scholar 

  64. G. Del Ré, B. Pullman, and T. Yonezawa, Biochim. Biophys. Acta 75 (1963) 153.

    Google Scholar 

  65. T. Yonezawa, G. Del Ré, and B. Pullman, Bull. Chem. Soc. Japan 37 (1964) 985.

    CAS  Google Scholar 

  66. H. Rapoport and G. S. Smolinsky, J. Am. Chem. Soc. 82 (1960) 934.

    Google Scholar 

  67. J. B. Conant and G. W. Wheland, J. Am. Chem. Soc. 54 (1932) 1212.

    CAS  Google Scholar 

  68. W. K. McEwen, J. Am. Chem. Soc. 58, (1936) 1124.

    CAS  Google Scholar 

  69. A. Streitwieser, Tetrahedron Letters, No. 6 (1960) 23.

    Google Scholar 

  70. A. Streitwieser, W. C. Langworthy, and J. I. Brauman, J. Am. Chem. Soc. 85 (1963) 1761.

    CAS  Google Scholar 

  71. E. L. Mackor, A. Hofstra, and J. H. Van der Waals, Trans. Far. Soc. 54 (1958) 66.

    CAS  Google Scholar 

  72. J. P. Colpa, C. Maclean, and E. L. Mackor, Tetrahadron 19 (1963) 65.

    CAS  Google Scholar 

  73. G. Dallinga, A. A. Verrijn Stuart, P. J. Smit, and E. L. Mackor, Electrochem. 61 (1957) 1019

    CAS  Google Scholar 

  74. E. L. Mackor, G. Dallinga, J. H. Kruizinga, and A. Hofstra, Rec. Trav. Chim. Pays-Bas 75 (1956) 836.

    CAS  Google Scholar 

  75. E. L. Mackor, A. Hofstra, and J. H. Van der Waals, Trans. Far. Soc. 54 (1958) 186.

    CAS  Google Scholar 

  76. A. Weller, Z. Electrochem. 61 (1957) 957; Disc. Far. Soc. 27 (1959) 28.

    Google Scholar 

  77. S. Ehrenson, J. Am. Chem. Soc. 83 (1961) 4493; 84 (1962) 2681.

    CAS  Google Scholar 

  78. D. A. McCaulay, B. H. Shoemaker, and A. P. Lien, Ind. Eng. Chem. 42 (1950) 2103.

    CAS  Google Scholar 

  79. D. A. McCaulay and A. P. Lien, J. Am. Chem. Soc. 73 (1951) 2013.

    CAS  Google Scholar 

  80. M. Kilpatrick and F. E. Luborsky, J. Am. Chem. Soc. 75 (1953) 577.

    CAS  Google Scholar 

  81. E. L. Mackor, A. Hofstra, and J. H. Van der Waals, Trans. Far. Soc. 54 (1958) 186.

    CAS  Google Scholar 

  82. N. Muller, L. W. Pickett and R. S. Mulliken, J. Am. Chem. Soc. 76 (1954) 4770.

    CAS  Google Scholar 

  83. R. L. Flurry and P. G. Lykos, J. Am. Chem. Soc. 85 (1963) 1033.

    CAS  Google Scholar 

  84. J. J. Elliott and S. F. Mason, J. Chem. Soc. (1959) 2352.

    Google Scholar 

  85. J. Ploquin, Compt. Rend. Acad. Sci. 226 (1948) 2140; R. Daudel, Compt. Rend. Acad. Sci. 227 (1948) 1241.

    Google Scholar 

  86. R. Daudel and O. Chalvet, J. Chim. Phys. 46 (1949) 332.

    CAS  Google Scholar 

  87. H. C. Longuet-Higgins, J. Chem. Phys. 18 (1950) 275.

    CAS  Google Scholar 

  88. O. Chalvet, M. Pages, M. Roux, N. P. Buu-Hoi, and R. Royer, J. Chim. Phys. 51 (1954) 548.

    CAS  Google Scholar 

  89. A. Pullman and T. Nakajima, J. Chim. Phys. 55 (1958) 793.

    Google Scholar 

  90. O. Chalvet, R. Daudel, and R. Peradejordi, J. Chim. Phys. 59 (1962) 709.

    CAS  Google Scholar 

  91. F. Peradejordi, Cahiers de Phys. 17 (1963) 393.

    CAS  Google Scholar 

  92. O. Chalvet, M. J. Huron, and F. Peradejordi, Compi. Rend. Acad. Sci. 259 (1964) 1631.

    CAS  Google Scholar 

  93. A. Kende, In the Application of Wave Mechanical Methods to the Study of Molecular Properties, (R. Daudel, ed.) Adv. in Chemical Physics 8 (1965) 133.

    Google Scholar 

  94. See, for example: A. Pullman and B. Pullman, Les Théories Electroniques de la Chimie Organique Masson, Paris, 1952.

    Google Scholar 

  95. C. A. Coulson and J. Jacobs, J. Chem. Soc. (1949) 1893.

    Google Scholar 

  96. T. Förster, Naturwiss. 36 (1949) 186.

    Google Scholar 

  97. M. Eigen, W. Kruse, G. Maass, and L. DeMaeyer, Progress in Reaction Kinetics, Vol. 2, Pergamon Press, Oxford, 1964, 287.

    Google Scholar 

  98. T. Förster, Z. Elektrochem. 54 (1950) 42, 531.

    Google Scholar 

  99. C. Sandorfy, Comt. Rend. Acad. Sci. 232 (1951) 617.

    Google Scholar 

  100. H. H. Jaffé, D. L. Beveridge, and H. L. Jones, J. Am. Chem. Soc. 86 (1964) 2932.

    Google Scholar 

  101. G. Jackson and G. Porter, Proc. Roy. Soc. 260 (1961) 13.

    CAS  Google Scholar 

  102. J. N. Murrell, The Theory of Electronic Spectra of Organic Molecules, Methuen, London, 1964.

    Google Scholar 

  103. J. W. Linnett, Electronic Structure of Molecules, Methuen, London, 1964.

    Google Scholar 

  104. J. C. Haylock, S. F. Mason, and B. E. Smith, J. Chem. Soc. (1963) 4897.

    Google Scholar 

  105. F. M. Raoult, Ann. Chim. Phys. 2 (1884) 66.

    Google Scholar 

  106. F. Dolezalek, Z. Physik. Chem. 64 (1908) 727.

    Google Scholar 

  107. J. H. Hildebrand and R. L. Scott, The Solubility of Non Electrolytes (3rd ed.), Reinhold Publ., New York, 1950.

    Google Scholar 

  108. S. Bratoz and M. L. Martin, J. Chem. Phys. 42 (1965) 1051.

    CAS  Google Scholar 

  109. W. M. Latimer and W. H. Rodebush, J. Am. Chem. Soc. 42 (1920) 1419.

    CAS  Google Scholar 

  110. R. Freymann, Ann. Phys. 20 (1933) 243.

    CAS  Google Scholar 

  111. J. Errera and P. Mollet, Compt. Rend. Acad. Sci. 204 (1937) 259.

    CAS  Google Scholar 

  112. See for example: N. Fuson, P. Pineau, and M. L. Josien, J. Chim. Phys. (1958) 454; P. Pineau, Thèse, Bordeaux 1961; F. Cruège, Thèse, Bordeaux 1963.

    Google Scholar 

  113. See for example: C. Quivoron, Thèse, Paris, 1965.

    Google Scholar 

  114. See for example: A. M. Dierckx, P. Huyskens, and Th. Zeegers-Huyskens, J. Chim. Phys. (1965), 336

    Google Scholar 

  115. P. Huyskens, Industr. Chim. Belge 30 (1965), 801.

    CAS  Google Scholar 

  116. N. Sprecher, Dissertation, Brussels 1961.

    Google Scholar 

  117. N. D. Coggeshall and G. M. Lang, J. Am. Chem. Soc. 70 (1948) 3283.

    CAS  Google Scholar 

  118. S. Nagakura and H. Baba, J. Am. Chem. Soc. 74 (1962) 5693.

    Google Scholar 

  119. S. Nagakura and M. Goutermann, J. Chem. Phys. 26 (1957) 881.

    CAS  Google Scholar 

  120. H. Baba, Bull. Res. Inst. Appl. Elect. 9 (1957), Nos. 2 and 3.

    Google Scholar 

  121. M. Bonnet, Thèse, Marseilles, 1960.

    Google Scholar 

  122. See also for example the numerous works of Gramstad et al. in Acta Chem. Scand. 1960, 1961, 1962, 1963 and in Spectrochimica Acta (1964, 1965), and those of Joesten and Drago, J. Am. Chem. Soc. (1962).

    Google Scholar 

  123. A. Pullman, Electronic Aspects of Biochemistry, Ac. Press, New York, 1964, p. 135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1973 D. Reidel Publishing Company Dordrecht, Holland

About this chapter

Cite this chapter

Daudel, R. (1973). Equilibrium Constants of Reversible Reactions in Solution. In: Quantum Theory of Chemical Reactivity. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-2684-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-2684-0_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-0420-7

  • Online ISBN: 978-94-010-2684-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics