Skip to main content

Basis of the Quantum Theory of the Chemical Reactivity of Molecules

  • Chapter
Quantum Theory of Chemical Reactivity

Abstract

Quantum chemistry is by definition the application of the methods of wave mechanics to the study of chemical phenomena, that is to say the transformation of molecules during chemical reactions. A specialist in quantum chemistry must have a very extensive knowledge of wave mechanics and must therefore also possess skill in handling the mathematical sciences, whilst at the same time he must have been trained as a chemist so as to be able to understand and interpret experimental data in the greatest possible depth. A purely theoretical scientist who is insufficiently imbued with experience in experimental chemistry often runs the risk of replacing the reaction he is studying by too simple a model and of carrying out long calculations just to reach a figure which does not represent the important element of the problem. That is why we felt it necessary to start this book with a general analysis of chemical reactivity so that we can stress the principal factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. N. Pease, J. Am. Chem. Soc. 59 (1937) 425.

    Article  CAS  Google Scholar 

  2. H. A. Taylor, J. Chem. Phys. 4 (1936) 116.

    Article  CAS  Google Scholar 

  3. E. R. Bell et al, Ind. Eng. Chem. 41 (1949) 2597.

    Article  CAS  Google Scholar 

  4. A. Weissberg, J. E. Lu Valle, and D. S. Thomas, J. Am. Chem. Soc. 65 (1943) 1934.

    Article  Google Scholar 

  5. For more details regarding the photochemical reaction of chlorine on hydrogen one should refer to G. Rollefson and M. Burton, Photochemistry, Prentice Hall, New York, 1939, pp. 302–312.

    Google Scholar 

  6. A. Tithoff, Z. Phys. Chem. 45 (1903) 641.

    Google Scholar 

  7. H. Backstrom and H. Alyea, J. Am. Chem. Soc. 51 (1929) 50.

    Google Scholar 

  8. G. M. Scawab, H. S. Taylor, and R. Spence, Catalysis, Van Nostrand, 1937, Chapter IX.

    Google Scholar 

  9. F. Haber, Naturwissenschaften 19 (1931) 450.

    Article  Google Scholar 

  10. J. Franck and F. Haber, Sitzber. Preuss. Akad. Wiss. Physik. Math. Kl. (1931) 250.

    Google Scholar 

  11. See for example: Rochow, D. T. Hurd, and R.N. Lewis, The Chemistry of Organometallic Compounds, Wiley, 1957.

    Google Scholar 

  12. R. Daudel and O. Chalvet, J. Chini. Phys. 53 (1956) 943.

    CAS  Google Scholar 

  13. See for example: L. Boltzmann, Leçons sur la Théorie des Gaz, Gauthier-Villars, 1902.

    Google Scholar 

  14. L. Hammett, Physical Organic Chemistry, McGraw-Hill, 1943.

    Google Scholar 

  15. S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill, 1941.

    Google Scholar 

  16. We shall present in a different manner the arguments due to H. Eyring, J. Chem. Phys. 3 (1935) 107; Chem. Rev. 17 (1935) 65; and Trans. Far. Soc. 34 (1938) 41.

    Article  CAS  Google Scholar 

  17. C. Eckart, Phys. Rev. 35 (1930) 1303.

    Article  CAS  Google Scholar 

  18. E. P. Wigner, Z. Phys. Chem. B19 (1932) 903.

    Google Scholar 

  19. R. P. Bell, Proc. Roy. Soc. 139A (1933) 446.

    Google Scholar 

  20. L. Landau, Phys. Z. Sowjetunion 1 (1932) 88; 2 (1932) 46.

    CAS  Google Scholar 

  21. C. Zener, Proc. Roy. Soc. 137A (1932) 696; 140A (1933) 660.

    Google Scholar 

  22. H. Eyring and M. Polanyi, Z. Phys. Chem. 12 (1930) 279.

    Google Scholar 

  23. S. Sato, J. Chem. Phys. 23 (1955) 2465; Bull. Chem. Soc. Japan 28 (1955) 450.

    Article  CAS  Google Scholar 

  24. R. E. Weston, J. Chem. Phys. 31 (1959) 892.

    Article  CAS  Google Scholar 

  25. H. Eyring and E. M. Eyring, Modern Chemical Kinetics, Reinhold Publishing Corporation 1963, p. 26.

    Google Scholar 

  26. F. London, E. Electrochem. 35 (1929) 552.

    CAS  Google Scholar 

  27. R. E. Weston, J. Chem. Phys. 31 (1959) 892.

    Article  CAS  Google Scholar 

  28. R. Snow and H. Eyring, J. Phys. Chem. 61 (1957).

    Google Scholar 

  29. G. E. Kimball and J. G. Trulio, J. Chem. Phys. 28 (1958) 493.

    Article  CAS  Google Scholar 

  30. E. R. Lippincott and A. Leifer, J. Chem. Phys. 28 (1958) 769.

    Article  CAS  Google Scholar 

  31. I. Shavitt, J. Chem. Phys. 31 (1959) 1359.

    Article  CAS  Google Scholar 

  32. R. E. Weston, J. Chem. Phys. 31 (1959) 892.

    Article  CAS  Google Scholar 

  33. R. P. Bell, Trans. Far. Soc. 55 (1959) 1.

    Article  CAS  Google Scholar 

  34. I. Shavitt, J. Chem. Phys. 31 (1959) 1359.

    Article  CAS  Google Scholar 

  35. E. P. Wigner, Z. Phys. Chem. 19 (1932) 203.

    Google Scholar 

  36. C. Eckart, Phys. Rev. 35 (1930) 130P.

    Google Scholar 

  37. See for example: S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill, 1941, p. 174.

    Google Scholar 

  38. K. H. Geib and P. Harteck, Z. Phys. Chem. (Bodenstein Festband) (1931), 849.

    Google Scholar 

  39. A. Farkas and L. Farkas, Proc. Roy. Soc. 152A (1953) 124.

    Google Scholar 

  40. O. L. Hershbach, H. S. Johnston, K. S. Pitzer, and R. Powell, J. Chem. Phys. 25 (1956) 736.

    Article  Google Scholar 

  41. J. Bigeleisen and M. G. Mayer, J. Chem. Phys. 15 (1947) 261.

    Article  CAS  Google Scholar 

  42. H. W. Melville and J. C. Robb, Proc. Roy. Soc. A 196 (1949) 445. M. Van Meersche, Bull. Soc. Chim. Belge 60 (1951) 99.

    Article  CAS  Google Scholar 

  43. H. Eyring, H. Gershinowitz, and C. E. Sun, J. Chem. Phys. 3 (1935) 786.

    Article  CAS  Google Scholar 

  44. According to H. Gershinowitz and H. Eyring, J. Am. Chem. Soc. 57 (1935) 985.

    Article  CAS  Google Scholar 

  45. E. Briner, W. Pfeiffer, and G. Malet, J. Chim. Phys. 21 (1924) 25.

    CAS  Google Scholar 

  46. See in particular N. B. Slater, Theory of Unimolecular Reactions, Cornell Univ. Press, Ithaca, N. Y., 1959; G. G. Halland and R. D. Levine, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1973 D. Reidel Publishing Company Dordrecht, Holland

About this chapter

Cite this chapter

Daudel, R. (1973). Basis of the Quantum Theory of the Chemical Reactivity of Molecules. In: Quantum Theory of Chemical Reactivity. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-2684-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-2684-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-0420-7

  • Online ISBN: 978-94-010-2684-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics