The Lunar Electronosphere and Implications for Erosion on the Moon

  • Evan Harris Walker
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 37)


Bodies in space that are subject to the solar ultraviolet emit photoelectrons. A portion of these escape, forming a current from the body balanced at equilibrium potential by accretion from the surrounding plasma. For a positively charged body a much larger flux of less energetic photoelectrons will be released from the surface, but fail to escape from the body. Their effect is to produce an inner screening of the body’s electric charge. The characteristics of this photoelectron sheath and the equilibrium surface potential are treated for spherical and flat bodies subject to the solar wind electron and ion flux.

The enhanced electric field resulting from the electronosphere gives rise on the Moon to electrostatic dust transport. Evidence for the presence of electrostatic erosion as a contributory process in shaping lunar features on the 1- to 10-m scale is found.

This transport mechanism, together with small and large-scale meteoric processes and radiation darkening of the exposed surface material, is adequate to account for the principal lunar features.


Solar Wind Dust Particle Lunar Surface Impact Crater Lunar Regolith 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apollo 15 Preliminary Examination Team: 1972, Science 175, 363.Google Scholar
  2. Baldwin, R. B.: 1963, The Measure of the Moon, University of Chicago Press, Chicago.Google Scholar
  3. Berg, C. A.: 1964, Nature 204, 461.ADSCrossRefGoogle Scholar
  4. Brown, H.: 1960, J. Geophys. Res. 65, 1679.ADSCrossRefGoogle Scholar
  5. Costes, N. C., Carrier, W. D., Mitchell, J. K., and Scott, R. F.: 1970, Science 167, 739.ADSCrossRefGoogle Scholar
  6. Gehrels, T.: 1964, Icarus 3, 491.ADSCrossRefGoogle Scholar
  7. Gold, T.: 1962, in Z. Kopal and Z. Michailova (eds.), Proc. IAUPulkovo Meeting, December 1960.Google Scholar
  8. Gold, T.: 1955, Monthly Notices Roy. Astron. Soc. 115, 585.ADSGoogle Scholar
  9. Grannis, P. D.: 1961, J. Geophys. Res. 66, 4293.ADSCrossRefGoogle Scholar
  10. Grard, R. J. L. and Tunaley, J. K. E.: 1971, J. Geophys. Res. 76, 2498.ADSCrossRefGoogle Scholar
  11. Grobman, W. D. and Blank, J. L.: 1969, J. Geophys. Res. 74, 3943.ADSCrossRefGoogle Scholar
  12. Hall, L. A. and Hinteregger, H. E.: 1970, J. Geophys. Res. 75, 6959.ADSCrossRefGoogle Scholar
  13. Hapke, B.: 1965a, Icarus 5, 154.ADSCrossRefGoogle Scholar
  14. Hapke, B.: 1965b, Ann. New York Acad. Sci. 123, 711.ADSCrossRefGoogle Scholar
  15. Hess, W. N. and Nordyke, M. D.: 1961, J. Geophys. Res. 66, 3405.ADSCrossRefGoogle Scholar
  16. Hinteregger, H. E.: 1961, J. Geophys. Res. 66, 2367.ADSCrossRefGoogle Scholar
  17. Manka, R. H.: 1973, this volume, p. 347.Google Scholar
  18. Öpik, E. J.: 1963, in S. F. Singer (ed.), Progres in the Astronautical Sciences, North-Holland Publishing Co., Amsterdam, Chap. 5.Google Scholar
  19. Öpik, E. J. and Singer, S. F.: 1959, Phys. Fluids 2, 653.MathSciNetADSCrossRefGoogle Scholar
  20. Öpik, E. J. and Singer, S. F.: 1960, J. Geophys. Res. 65, 3065.ADSCrossRefGoogle Scholar
  21. Öpik, E. J. and Singer S. k’.: 1961, Phys. Fluids 4, 221.MathSciNetADSCrossRefGoogle Scholar
  22. Reasoner, D. L. and Burke, W. J.: 1973, this volume, p. 369.Google Scholar
  23. Shoemaker, E. M., Hait, M. H., Swann, G. A., Schleicher, D. L., Dahlem, D. H., Schaber, G. G., and Sutton, R. L.: 1970, Science 167, 452.ADSCrossRefGoogle Scholar
  24. Singer, S. F. and Walker, E. H.: 1962a, Icarus 1, 7.ADSCrossRefGoogle Scholar
  25. Singer, S. F. and Walker, E. H.: 1962b, Icarus 1, 112.ADSCrossRefGoogle Scholar
  26. Singer, S. F.: 1956, in J. A. van Allen (ed.), Scientific Uses of Earth Satellites, University of Michigan Press, Ann Arbor.Google Scholar
  27. Spitzer, L., Jr. and Savedoff, M. P.: 1950, Astrophys. J. 111, 593.ADSCrossRefGoogle Scholar
  28. Walbridge, E. W.: 1969, Icarus 10, 342.ADSCrossRefGoogle Scholar
  29. Walker, E. H.: 1969, Am. Geophys. Union. Trans. 50, 221.Google Scholar
  30. Walker, E. H.: 1967, Icarus 7, 233.ADSCrossRefGoogle Scholar
  31. Walker, E. H.: 1966, J. Geophys. Res. 71, 5007.ADSGoogle Scholar
  32. Walker, E. H.: 1965, Trans. Am. Geophys. Union 46, 136.Google Scholar
  33. Walker, E. H.: 1962, J. Geophys. Res. 67, 2586.ADSCrossRefGoogle Scholar
  34. Wehner, G. K., KenKnight, C. E., and Rosenberg, D. L.: 1964, Applied Science Division, Litton Systems Inc., Minneapolis, Minn., 6th Quarterly Status Report(Contract NASW-75), Report No. 2669.Google Scholar
  35. Wehher, G. K., KenKnight, C. E. and Rosenberg, D. L.: 1963, Planetary Space Sci. 11, 1257.ADSCrossRefGoogle Scholar
  36. Whipple, F. L.: 1960, in O. O. Benson Jr. and H. Strughold (eds.), Physics and Medicine of the Atmosphere and Space, John Wiley, New York, p. 48.Google Scholar
  37. Willis, R. F., Anderegg, M., Feuerbacher, B., and Fitton, B.: 1973, this volume, p. 389.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1973

Authors and Affiliations

  • Evan Harris Walker
    • 1
  1. 1.U.S. Army Ballistic Research LaboratoriesAberdeen Proving GroundUSA

Personalised recommendations