Skip to main content

The Nature and Structure of Spacetime

  • Chapter
The Physicist’s Conception of Nature

Abstract

Space and time and the even more basic notion of spacetime, and the structures assigned to them, belong to the most fundamental concepts of science. So far, every physical theory of some generality and scope, whether it is a classical or a quantum theory, a particle or a field theory, presupposes for the formulation or its laws and for its interpretation some spacetime geometry, and the choice of this geometry predetermines to some extent the laws which are supposed to govern the behaviour of matter, the laws of primary concern to physics. Thus Galileo’s assertion1 still applies: ‘He who undertakes to deal with questions of natural sciences without the help of geometry is attempting the unfeasible.’

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. I. G. Galilei, Dialogo. Opere. VIL, p 299, Edizione nazionale Florence (1890–1909).

    Google Scholar 

  2. E. P. Wigner, Annals Math. 40, 139 (1939).

    Article  MathSciNet  Google Scholar 

  3. A. Einstein, Annalen der Physik 17, 891 (1905).

    Article  ADS  Google Scholar 

  4. H. Minkowski, Göttinger Nachr. (1908), p. 53; see also his Address delivered at the 80th Assembly of German Natural Scientists and Physicians, at Cologne, September 1908, reprinted in the well-known Dover paperback The Principle of Relativity. The quotation on page 73 is taken from this address.

    Google Scholar 

  5. P. G. Roll, R. Krotkov, and R. H. Dicke, Ann. Phys. (N.Y.) 26, 442 (1964); V. B. Braginsky and V. J. Panov, Zh. Eksp. Teor. Fiz. 61, 875 (1971).

    Google Scholar 

  6. A. Einstein, Jb. Radioakt. Electronik 4, 411 (1907); Z. Math. Phys. 62, 225 (1913); Sber. preuss. Akad. Wiss. 844 (1915); Annalen der Physik 49, 769 (1916). The statement in the text emphasizes what is now considered to be the essential content of Einstein’s analysis. Historically, the role of the connection as an important structure independently of the metric was recognized only in 1917 and the following years. Seeref. 27 and the remarks on page 78. For a detailed account of the history including more references see the paper by J. Mehra in this volume.

    Google Scholar 

  7. H. Weyl, Philosophy of Mathematics and Natural Science, Princeton (1949). The quotation is taken from section 18, part C.

    Google Scholar 

  8. See, e.g., H. Poincaré, Revue de Métaphysique et de Morale, vol. 3 (1895).

    Google Scholar 

  9. See, e.g., M. Jammer, Concepts of Space, Cambridge/U.S. A., (1954). This book contains many references to original sources as well as to historical accounts. Many interesting remarks about the development of spacetime concepts, from a modern point of view, are found in ref. 7.

    Google Scholar 

  10. For a new version of this attitude concerning the status of physical geometry see P. Lorenzen, Philosophia naturalis 6, 415 (1961).

    Google Scholar 

  11. W. K. Clifford, in The Common Sense of the Exact Sciences (ed. J. R. Newman), New York (1946), p. 202; J. A. Wheeler, Geometrodynamics, New York (1962).

    Google Scholar 

  12. R.Penrose, Structure of Spacetime, in Battelle Rencontres (ed. C. M. De Witt and J. A. Wheeler ), New York (1968), p. 121.

    Google Scholar 

  13. G. W. Leibniz, Math. Schriften 7, p. 18 fed. Gerhardt), Berlin (1849). The causal interpretation of time order and simultaneity is also used by Kant.

    Google Scholar 

  14. H. Weyl, Raum, Zeit, Materie, 5th ed., Berlin (1923). See in particular p. 142.

    Google Scholar 

  15. See, e.g., ref. 9, ch. IV.

    Google Scholar 

  16. Über die wissenschaftliche Fassung des Galileischen Beharrungsgesetzes, Ber. kgl. Ges. Wiss., Math.-Phys. Kl. (1885), p. 333.

    Google Scholar 

  17. See ref. 15, section 20.

    Google Scholar 

  18. F. Klein, Vergleichende Betrachtungen über neuere geometrische Forschungen, Erlangen (1972).

    Google Scholar 

  19. V. Bargmann, Ann. Math. 59,1 (1954). See also J. M. Juch, Foundations of Quantum Mechanics, Reading/Mass. (1968), ch. 13.

    Google Scholar 

  20. E. Cartan, Ann. Ec. Norm. Sup. 40, 325 (1923); 41, 1 (1924).

    Google Scholar 

  21. K. Friedrichs, Math. Ann. 98, 566 (1927).

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Havas, Rev. Mod. Phys. 36, 938 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. A. Trautman, in Perspectives in Geometry and Relativity (ed. B. Hoffmann ), Bloomington (1966), p. 413.

    Google Scholar 

  24. The following reasoning follows largely A. Trautman; see ref. 24 and his Brandeis lectures (1964). It is worth noticing that the section in which Schrödinger introduces gravitational fields on pages 56–60 of his beautiful book Space-Time Structure, Cambridge (1950) - can be read verbatim as an introduction to Cartan’s geometrical version of Newton’s theory of gravity, although they are meant to apply to relativity (and do, of course).

    Google Scholar 

  25. O. H. L. Heclcmann and E. Schücking, ‘Newtonsche und Einsteinsche Kosmologie’, in Encycl. of Physics (ed. S. Flügge), 53, 489 (1959).

    Google Scholar 

  26. T. Levi-Civita, Rend. Palermo 42, 173 (1917); J. A. Schouten, Verh. Kon. Akad. Amsterdam 12, 95 (1918).

    Google Scholar 

  27. C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954); R. Hermann, Vector Bundles in Mathematical Physics, vol. 1, New York (1970), ch. 3.

    Google Scholar 

  28. G. Holland, Ph.D-thesis, University of Hamburg (1965).

    Google Scholar 

  29. E. Mach, Die Mechanik in ihrer Entwicklung, 7th ed., Leipzig (1912).

    Google Scholar 

  30. See G. Rosen, Am. Journ. Phys. 40, 683 (1972) and the references given there.

    Google Scholar 

  31. The distinction between a ‘weak’ and a ‘strong’ principle of equivalence is due to R. H. Dicke; see The Theoretical Significance of Experimental Relativity, New York (1964).

    Google Scholar 

  32. For a review and detailed references, see ref. 26.

    Google Scholar 

  33. J. L. Anderson, Principles of Relativity Physics, New York (1967), section 4. 3.

    Google Scholar 

  34. K. S. Thorne, C. M. Will and W. T. Ni, in Proceedings of the Conference on Experimental Tests of Gravitational Theories (ed. R. W. Davies), NASA-JPL Technical Memorandum 33–499. See also Will’s lectures presented at the 56th Fermi summer school, Varenna 1972.

    Google Scholar 

  35. E. Breitenberger, Nuovo Cimento ser. 11, IB, 1 (1971).

    Google Scholar 

  36. H. Weyl, Mathematische Analyse des Raumproblems, Berlin (1923), especially lecture 3.

    Google Scholar 

  37. V. A. Fock, Theory of Space, Time and Gravitation, Moscow 1955, Section 8 and Appendix A.

    Google Scholar 

  38. E. C. Zeeman, J. Math. Phys. 5, 490 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. A. D. Alexandrov, Commun. of the State University of Leningrad, No. 8, 103 (1953).

    Google Scholar 

  40. Ref. 7, section 17.

    Google Scholar 

  41. F. J. M. Farley, J. Bailey, R. C. A. Brown, M. Giesch, H. Jöstlein, S. van der Meer, E. Picasso and M. Tannenbaum, Nuovo Cimento 45, 281 (1966).

    Article  ADS  Google Scholar 

  42. More precisely: elementary-particle experiments do not determine the variability of the metric field. This fact has been emphasized by Thorne and Will, see ref. 35.

    Google Scholar 

  43. Our formulation of the principle differs only slightly from that of Dicke given in ref. 32. The present formulation avoids inconsistencies which arise from the noncommutativity of covariant derivatives if one speaks of ‘all’ rather than of ‘some’ local laws.

    Google Scholar 

  44. A. Schild, ch. 1 in Relativity Theory and Astrophysics (ed. J. Ehlers); Lectures in Applied Mathematics 8, Providence (1967).

    Google Scholar 

  45. S. Deser, General Relativity and Gravitation 1, 9 (1970).

    Article  MathSciNet  ADS  Google Scholar 

  46. J. Ehlers, F. A. E. Pirani, A. Schild, ch. 4 in General Relativity (ed. L. O’Raifeartaigh), Oxford (1972), p. 63. See also the forthcoming lectures by J. Ehlers given at the Banff Summer School on Relativity and Gravitation, August 1972, to be published by the Canadian Physical Society.

    Google Scholar 

  47. M. Castagnino, J. Math. Phys. 12, 2203 (1971); E. Kronheimer and R. Penrose, Proc. Camb. Phil. Soc. 63, 481 (1967); H. Reichenbach, Axiomatik der relativistischen Raum-Zeit-Lehre, Braunschweig (1924); J. L. Synge, Relativity: the special theory, Amsterdam (1956), Relativity: the general theory, Amsterdam (1964); A. Trautman, ‘The general theory of relativity’, Soviet Physics Usp$19, 319 (1966), see also ref$124; H. Weyl, see refs$115 and 37; N. M. J. Woodhouse, J. Math. Phys. 14, 495 (1973).

    Google Scholar 

  48. A projective structure can be defined as an equivalence class of symmetric linear connections all having the same geodesies except for parametrization. For a direct definition (avoiding reference to connections) see ref. 47.

    Google Scholar 

  49. R. F. Marzke and J. A. Wheeler, in Gravitation and Relativity (ed. H. Y. Chiu and W. F. Hoffman ), New York (1964).

    Google Scholar 

  50. B. Hoffmann and W. Kundt, in Recent Developments in General Relativity, p. 303, Warsaw (1962).

    Google Scholar 

  51. See, in particular, H. Weyl, Physik. Z. 22, 473 (1921).

    Google Scholar 

  52. Instead of obtaining a metric by adding to a conformai structure a particular kind of projective structure, as indicated in the text and elaborated in ref. 47, one can also get a metric by supplementing the conformai (or causal) structure by a measure. Whereas this last procedure may lend itself more readily to generalizations at the microscopic level, as advocated by D. Finkelstein (ref. 62), there appears to be no phenomenological motivation for introducing a spacetime measure (4-volume) as a primitive concept.

    Google Scholar 

  53. See ref. 13, sections 4 and 5 for an excellent exposition.

    Google Scholar 

  54. These notions have been defined precisely by L. Markus, Ann. Math. 62, 411 (1955).

    Article  Google Scholar 

  55. The connection between spacetime orientations and elementary symmetry violations has been investigated by R. Geroch, Ph. D. Thesis, Princeton 1967; and by Ya. B. Zeldovich and I. D. Novikov, Pisma V Red. Zh. E.T.F. 6, 772 (1967).

    Google Scholar 

  56. This theory is outlined in A. Trautman’s contribution to this volume, where relevant references will be found.

    Google Scholar 

  57. See, e.g., Schrôdinger’s book mentioned in note 25, and M. A. Tonnelat, Les théories unitaires Vélectromagnétisme et de la gravitation, Paris 1965.

    Google Scholar 

  58. R. Penrose, An Analysis of the Structure of Spacetime, Adams Prize essay, 1966, and ref. 13.

    Google Scholar 

  59. G. F. Chew, Sci. Progr. 51, 529 (1963).

    Google Scholar 

  60. See S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge 1973, and the references therein.

    Google Scholar 

  61. See K. Menger’s contribution to the well-known book Albert Einstein, (ed. A. Schilpp), Evanston, 111., U.S.A. 1949; also Topology without points, Rice Institute Pamphlet, 1932.

    Google Scholar 

  62. D. Finkelstein, Phys. Rev. 184, 1261 (1969); also Coral Gables Conference on Fundamental Interactions at High Energy, New York 1969, p. 338. The quotation is taken from the last reference.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 D. Reidel Publishing Company, Dordrecht-Holland

About this chapter

Cite this chapter

Ehlers, J. (1973). The Nature and Structure of Spacetime. In: Mehra, J. (eds) The Physicist’s Conception of Nature. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-2602-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-2602-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-2604-8

  • Online ISBN: 978-94-010-2602-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics