Skip to main content

The Electron: Development of the First Elementary Particle Theory

  • Chapter
The Physicist’s Conception of Nature

Abstract

It is fair to say that the history of the electron lies in the very centre of the development of modern physics. It is therefore most appropriate to celebrate the 75th anniversary of the discovery of the electron (by Thomson) by reviewing its history and reporting on the present state of the classical theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. E. Whittaker, A History of the Theories of Aether and Electricity, Vol. I, Thos. Nelson andelectron (by Thomson) by reviewing its history and reporting on the present state of the classical theory. Sons Ltd., London 1910, revised edition, 1951; vol. II, Philosophical Library, New York 1954.

    Google Scholar 

  2. M. Jammer, The Conceptual Development of Quantum Mechanics, McGraw Hill Book Co., New York, 1966.

    Google Scholar 

  3. J. C. Maxwell, Phil. Trans 155, 459 (1865).

    Google Scholar 

  4. J. J. Waterston, Phil. Trans. 183, 1 (1892). The publication of this paper was delayed by 47 years!

    Google Scholar 

  5. J. J. Thomson, Phil. Mag 11, 227 (1881).

    Google Scholar 

  6. G. F. FitzGerald, Proc. Roy. Dublin Soc 3, 250 (1881).

    Google Scholar 

  7. O. Heaviside, Phil. Mag. 27, 324 (1889); reprinted in Electrical Papers, II, p. 504, Chelsea Publ. Co., Bronx, New York 1970.

    Google Scholar 

  8. O. Heaviside, Electrician, 23 Nov. 1888 and ref. 8 above.

    Google Scholar 

  9. A. Lienard, L’Eclairage elect. 16, 5, 53, 106 (1898); E. Wiechert, Arch. Neerl 5, 549 (1900).

    Google Scholar 

  10. J. J. Thomson, Phil. Mag. 44, 298 (1897); Nature 55, 453 (1897).

    Google Scholar 

  11. W. Kaufmann, Ann. Physik 61, 544 (1897).

    ADS  Google Scholar 

  12. J. S. E. Townsend, Phil. Trans 143, 129 (1899).

    Google Scholar 

  13. R. A. Millikan, B. A. Rep 410 (1912).

    Google Scholar 

  14. H. A. Lorentz, Arch. Neerland, Sci. Exact. Nat 25, 363 (1892).

    Google Scholar 

  15. K. Schwarzschild, Gött. Nachr, p. 126 (1903).

    Google Scholar 

  16. W. Kaufmann, Gött. Nachr, p. 143 (1901).

    Google Scholar 

  17. M. Abraham, Gött. Nachr, p. 20 (1902).

    Google Scholar 

  18. W. Kaufmann, Gött. Nachr, p. 291 (1902); Physik. Z. 4, 54 (1902).

    Google Scholar 

  19. M. Abraham, Ann. Physik 10, 105 (1903).

    Google Scholar 

  20. J. H. Poynting, Phil Trans. 175, 343 (1884); O. Heaviside, Electrician 14, 178 and 306 (1885).

    Google Scholar 

  21. M. Abraham, Physik. Z. 5, 576 (1904). This was written in response to Lorentz’s contraction hypothesis (see ref. 30 below). Abraham argued that this contraction would off-set the internal force balance, require non-electromagnetic forces, and thus destroy the electron theory which was based on a purely electromagnetic electron.

    Google Scholar 

  22. H. A. Lorentz, Encyclopadie der Mathematischen Wissenschaften, vol. V/2 (1904), pp. 63–144 (Maxwells Elektromagnetische Theorie) and pp. 145–280 (Weiterbildung der Maxwellschen Theorie; Elektronentheorie). A relatively recent exposition of the applied part of Lorentz’s theory was given by L. Rosenfeld, Theory of Electrons, North-Holland, 1951; Dover 1965.

    Google Scholar 

  23. H. A. Lorentz, Proc. Acad. Sci. Amsterdam 6, 809 (1904).

    Google Scholar 

  24. A. Einstein, Ann. Physik 17, 891 (1905).

    Article  ADS  Google Scholar 

  25. H. Poincaré, Bidl. des Sci. Math 28, 302 (1904).

    Google Scholar 

  26. H. Poincaré, Rendiconti del Circolo Mat. Palermo 21, 129 (1906).

    Article  MATH  Google Scholar 

  27. H. Minkowski, Gott. Nachr., p. 53 (1908); Math. Ann. 68, 526 ( 1910 ). The latter article was published posthumously and was written up by M. Born.

    Google Scholar 

  28. W. Pauli, Encycl. d. Math. Wiss. 2, 667 (1920); reprinted in English translation with sup-plementary notes by the author as Theory of Relativity, Pergamon Press, New York (1958).

    Google Scholar 

  29. E. Noether, Gött. Nachr. p. 235 (1918).

    Google Scholar 

  30. Ref. 35, English translation, p. 185.

    Google Scholar 

  31. C. Møller, The Theory of Relativity, Oxford (1952); M. Abraham and R. Becker, Theorie der Elektrizität, Teubner, Leipzig, all editions since the 3rd; J. D. Jackson, Classical Electrodynamics, John Wiley, New York (1962). R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Addison-Wesley (1964); Vol. II, p. 284.

    Google Scholar 

  32. E. Fermi, Physik. Z. 23, 340 (1922); Atti Accad. Nazi. Lincei 31, 184 and 306 (1922).

    Google Scholar 

  33. H. Mandel, Z. Phys. 39, 40 (1926); W. Wilson, Proc. Phys. Soc. CLondon) 48, 736 (1936).

    Google Scholar 

  34. B. Kwai, J. Phys. Radium 10, 103 (1949).

    Article  Google Scholar 

  35. F. Rohrlich, Am. J. Phys 28, 639 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. F. Rohrlich, Classical Charged Particles, Addison-Wesley, Reading (1965).

    MATH  Google Scholar 

  37. M. v. Laue, in Ann. Physik, 35, 524 (1911), first proved that P** defined by (5.9) is a four-vector if and only if the stresses vanish. He also gave this four-dimensional generalization of Gauss’ law in his book Die Relativitätstheorie, Braunschweig, 1st ed. 1911, 7th ed. 1961.

    Google Scholar 

  38. F. Rohrlich, Am. J. Phys 38, 1310 (1970).

    Article  ADS  Google Scholar 

  39. A. Staruszkiewicz, Nuovo Cim. 45, A, 684 (1966); F. Rohrlich, loc. cit. (ref. 46).

    Google Scholar 

  40. P. A. M. Dirac, Proc. Roy. Soc. (London) A, 168, (1938); Ann. de Vlnst. Poincaré, 9, 13 (1939).

    Google Scholar 

  41. J. Larmor, Phil. Mag 64, 503 (1897).

    Google Scholar 

  42. M. Abraham, ref. 23 and Ann. Physik 14, 236 (1904).

    Google Scholar 

  43. O. Heaviside, Nature 67, 6 (1902).

    Article  ADS  Google Scholar 

  44. M. v. Laue, Ann. Physik 28, 436 (1909).

    Google Scholar 

  45. H. A. Lorentz, ref. 29, section 37.

    Google Scholar 

  46. M. Abraham Theorie der Elektrizität, Teubner, 2nd ed. (1908), vol. 2.

    Google Scholar 

  47. G. A. Schott, Phil. Mag 29, 49 (1915).

    Google Scholar 

  48. H. J. Bhabha, Phys. Rev. 70, 759 (1946); F. Rohrlich, Ann. Physics 13, 93 (1961).

    Google Scholar 

  49. J. Frenkel, Z. Physik 32, 518 (1925), esp. pp. 526–527.

    Google Scholar 

  50. H. Tetrode, Z. Physik 10, 317 (1922); A. D. Fokker, Z. Physik 58, 386 (1929).

    Google Scholar 

  51. J. A. Wheeler and R. P. Feynman, Rev. Mod. Phys. 17, 157 (1945) and 21, 425 (1949).

    Google Scholar 

  52. R. Haag, loc. ext., ref. 68; D. Ivanenko and A. Sokolov, Klassische Feldtheorie, Akademie- Verlag, Berlin (1953) (Russian edition, 1949 ).

    Google Scholar 

  53. G. N. Plass, Rev. Mod. Phys 33, 37 (1961).

    Google Scholar 

  54. F. Rohrlich, ref. 61; see also ref. 43.

    Google Scholar 

  55. C. Teitelboim, Phys. Rev. D 1, 1572 (1970) and D 3, 297 (1971).

    Google Scholar 

  56. C. Teitelboim, Phys. Rev. D 4, 345 (1971); C. Teitelboim and C. A. Lopez, Nuovo Cim. Lett 2, 225 (1971).

    Google Scholar 

  57. G. E. Uhlenbeck and S. Goudsmit, Naturwiss. 13, 953 (1925); Nature 117, 264 (1926).

    Google Scholar 

  58. W. Pauli, Z. Physik 43, 601 (1927).

    Article  ADS  Google Scholar 

  59. L. H. Thomas, Nature 117, 514 (1926); Phil. Mag 3, 1 (1927).

    Google Scholar 

  60. J. M. Levy-Leblond, Comm. Math. Phys 6, 286 (1967).

    Google Scholar 

  61. J. Frenkel, Z. Physik 37, 243 (1926).

    Article  ADS  Google Scholar 

  62. H. A. Kramers, Physica 1, 825 (1934); Quantum Mechanics, North-Holland 1957, Dover 1964 (the latter is a copy of the corrected, second edition of 1958 ). This book is a translation of two articles, ‘Die Grundlagen der Quantentheorie’ and ‘Quantentheorie der Elektronen und der Strahlung’, published in vol. 1 of Hand- und Jahrbuch der chemischen Physik, Akad. Verlag, Leipzig, 1938.

    Google Scholar 

  63. H. J. Bhabha and H. C. Corben, Proc. Roy. Soc 178, 273 (1941).

    Article  MathSciNet  ADS  Google Scholar 

  64. V. Bargmann, L. Michel, and V. L. Telegdi, Phys. Rev. Lett 2, 435 (1959).

    Article  ADS  Google Scholar 

  65. J. K. Lubanski, Physica 9, 310 and 325 (1942).

    Google Scholar 

  66. V. Bargmann and E. P. Wigner, Proc. Natl. Ac. Sei 34, 211 (1948).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. D. Zwanziger, Phys. Rev. 137, B, 1535 (1965).

    Google Scholar 

  68. D. Zwanziger, Phys. Rev. 139, B, 1318 (1965).

    Google Scholar 

  69. J. Weyssenhoff and A. Raabe, Acta Phys. Polon 9, 7 (1947).

    MathSciNet  Google Scholar 

  70. H. C. Corben, Phys. Rev. 121, 1833 (1961) and Nuovo Cim 20, 529 (1961).

    Google Scholar 

  71. M. H. L. Pryce, Proc. Roy. Soc A195, 62 (1948).

    Google Scholar 

  72. D. Bohm and J.-P. Vigier, Phys. Rev. 109, 1882 (1958); D. Bohm, P. Hillion, T. Takabayasi and J.-P. Vigier, Prog. Theor. Phys. 23, 496 (1960).

    Google Scholar 

  73. M. Born, Ann. Physik 30, 1 (1909).

    Article  ADS  Google Scholar 

  74. P. Ehrenfest, Phys. Z. 10, 918 (1909); G. Herglotz, Ann. Physik 31, 393 (1910); E. Noether, ibid. 31, 919 (1910).

    Google Scholar 

  75. C. Moller, Comm. Dublin Inst. Adv. Studies A 5 (1949); see also The Theory of Relativity, Oxford (1952).

    Google Scholar 

  76. E. Plahte, Nuovo dm. Suppl. 4, 246 and 291 (1966).

    Google Scholar 

  77. P. A. M. Dirac, Proc. Roy. Soc. A 117, 610 and A 118, 351 (1928).

    Google Scholar 

  78. W. Pauli, Helv. Phys. Acta 5, 179 (1932).

    Google Scholar 

  79. W. Pauli, Rapport du Conseil-Solvay, 1930.

    Google Scholar 

  80. L. de Broglie, La Théorie des Particules de Spin 1/2, Gauthier-Villars, Paris (1952), chapter X.

    Google Scholar 

  81. S. I. Rubinow and J. B. Keller, Phys. Rev 131, 2789 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  82. D. M. Fradkin and R. H. Good, Rev. Mod. Phys. 33, 343 (1961).

    Article  ADS  MATH  Google Scholar 

  83. I. Bialynicki-Birula, Ann. Physics 67, 252 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  84. R. D. Driver, Phys. Rev. 178, 2051 (1969) and references quoted there.

    Google Scholar 

  85. J. K. Hale and A. P. Stokes, J. Math. Phys 3, 70 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  86. F. Rohrlich, Phys. Rev 150, 1104 (1966).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 D. Reidel Publishing Company, Dordrecht-Holland

About this chapter

Cite this chapter

Rohrlich, F. (1973). The Electron: Development of the First Elementary Particle Theory. In: Mehra, J. (eds) The Physicist’s Conception of Nature. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-2602-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-2602-4_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-2604-8

  • Online ISBN: 978-94-010-2602-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics