Skip to main content

The Mathematical Structure of Elementary Quantum Mechanics

  • Chapter
The Physicist’s Conception of Nature
  • 1239 Accesses

Abstract

The discovery of quantum mechanics is one of the most exciting incidents in the intellectual history of man. It marks the synthesis of contributions from many brilliant men who assembled different facets into a unified and coherent theory. The result is more than the sum total of their individual contributions. It is also a new paradigm, a programme which has been the starting point of innumerable extensions into all areas of physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. P. A. M. Dirac, Principles of Quantum Mechanics, 4th ed. (referred to as P. in the following), Oxford (1958). The idea of the correspondence between Poisson bracket and commutator appears already in Dirac’s first publication on the new mechanics (Proc. Roy. Soc. A 109, 642 (1925)).

    Google Scholar 

  2. P. A. M. Dirac, loc. cit., ref. 1, p. 106 if.

    Google Scholar 

  3. J. von Neumann, Math. Ann. 104, 570 (1931).

    Article  MathSciNet  Google Scholar 

  4. Y. Kilpi, Ann. Acad. Sei. Fennicae A 315, 3 (1962).

    MathSciNet  Google Scholar 

  5. H. G. Tillmann, Acta Sei. Math. (Szeged) 24, 258 (1963); ibid., 15, 332 (1964.)

    Google Scholar 

  6. J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer (1932), esp. Section II, 9, p. 75 ff.

    Google Scholar 

  7. G. Mackey, Ann. of Math. 55,101 (1952); 58,193 (1953); Ann. J.Math. 73, 576 ( 1951 ). A convenient summary of this work is contained in G. Mackey, Included Representation of Groups and Quantum Mechanics, Benjamin (1968).

    Google Scholar 

  8. E. P. Wigner, Ann. of Math. 40, 149 (1939).

    Article  MathSciNet  Google Scholar 

  9. A. S. Wightman, Rev. Mod. Phys. 34, 845 (1962).

    Article  MathSciNet  ADS  Google Scholar 

  10. T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949).

    Article  ADS  MATH  Google Scholar 

  11. W. Amrein, Helv. Phys. Acta 42, 149 (1969).

    MATH  Google Scholar 

  12. Neumark, Doklady Acad. Sci. URSS 41,359 ( 1961 ). B. Sz.-Nagy, Functional Analysis, Appendix, Ungar Pubi. Co. New York (1960).

    Google Scholar 

  13. G. Emch, Helv. Phys. Acta 36, 739; 770 (1963). See also J. M. Jauch, ‘Projective Representations of the Poincaré Group in a Quaternionic Hilbert Space’, in Group Theory and its Applications, Academic Press, New York (1968).

    Google Scholar 

  14. M. Born, W. Heisenberg and P. Jordan, ‘Zur Quantenmechnik II’, Z. Phys. 35, 557 (1926).

    Article  ADS  Google Scholar 

  15. P. A. M. Dirac, Z. Phys. 44, 585 (1927).

    Article  ADS  Google Scholar 

  16. W. Heisenberg, Z. Phys. 120, 513; 673.

    Google Scholar 

  17. J. A. Wheeler, Phys. Rev. 52, 1107 (1937).

    Article  ADS  Google Scholar 

  18. C. Møller, Del Kgl. Danske Vid. Selskab 23, No. 1 (1945); 22, No. 19 (1946).

    Google Scholar 

  19. T. Kato and S. T. Kuroda, Nuovo Cimento 14, 1102 (1959).

    Article  MathSciNet  Google Scholar 

  20. J. D. Dollard, J. Math. Phys. 5,729 (1964). A general account including many particle scattering with long range potentials is found in J. D. Dollard, ’Quantum Mechanical Scattering Theory for Short-Range and Coulomb Interactions ’ Rocky Mountain J. of Math. 1, 4 (1971).

    Google Scholar 

  21. T. Kato and S. R. Kuroda, Proceedings of Stone Conference, University of Chicago (1969). S. T. Kuroda, Proceedings of the Symposium on Advanced Topics in the Mathematical Foundations of Scattering Theory, Institute for Theoretical Physics, Univ. of Geneva ( 1968 ), Ed. by W. Amrein.

    Google Scholar 

  22. W. O. Amrein, V. Georgescu and J. M. Jauch, Helv. Phys. Acta 44, 407 (1971).

    MathSciNet  Google Scholar 

  23. E. Prugovecki, Nuovo Cimento 63 B, 569 (1969); ibid., 4 B, 124 (1971).

    Google Scholar 

  24. D. B. Pearson, Nuovo Cimento 2 A 853 (1971).

    Google Scholar 

  25. A. Galindo, Helv. Phys. Acta 32, 412 (1959).

    MATH  Google Scholar 

  26. R. G. Newton, Scattering Theory of Waves and Particles, McGraw Hill (1966), esp. Part III, ch. 6. and 7.

    Google Scholar 

  27. P. A. Reijto, Comm. Pure Appi. Math. 16,279 (1963), ibid., 17, 257 (1964).

    Article  Google Scholar 

  28. W. O. Amrein, P. Martin and B. Misra, Helv. Phys. Acta 43, 313 (1970); R. B. Lavine, J. Funct. Anal. 5, 368 (1970); J. M. Combes, C.N.R.S. Marseilles, Preprint 1969.

    Google Scholar 

  29. J. M. Jauch and K. Sinha, Preprint Geneva, to be published in Helv. Phys. Acta. P. Martin and B. Misra have generalized the result of the preceding authors to the relativistic case in a paper to be published in Helv. Phys. Acta and they were able to show that ail total cross-sections must be bounded in the limit of high energy X by In A.

    Google Scholar 

  30. C. Piron, Helv. Phys. Acta 37, 439 (1964), Theorem 22. Actually the proof of this theorem is incomplete. I. was later completed by I. Amemiya and H. Araki, Pubi. Research Inst. Sc. Kyoto Univ. A 2, 423 (1967).

    Google Scholar 

  31. J.-P. Eckmann and Ph. Ch. Zabey, Helv. Phys. Acta 42, 420 (1969).

    MathSciNet  Google Scholar 

  32. C. Piron and S. Gudder, J. Math. Phys. 12, 1583 (1971).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 D. Reidel Publishing Company, Dordrecht-Holland

About this chapter

Cite this chapter

Jauch, J.M. (1973). The Mathematical Structure of Elementary Quantum Mechanics. In: Mehra, J. (eds) The Physicist’s Conception of Nature. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-2602-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-2602-4_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-2604-8

  • Online ISBN: 978-94-010-2602-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics