Skip to main content

Lectures in Sub-Synoptic Scales of Motion and Two-Dimensional Turbulence

  • Chapter
Dynamic Meteorology

Abstract

It has long been recognized that the atmosphere shares certain attributes with those of a turbulent fluid. Its apparent randomness and unpredictability on many scales combined with long term statistical order are just about what one would expect to observe if he were, say, an ant dwelling amongst the eddies of a turbulent pipe flow. Until recently, however, little use has been made of this sort of analogy except in the case of the surface boundary layer. The principal reason was first (before about World War II) the non-recognition by meteorologists of the special characteristics of the large scale atmosphere as a quasi-two-dimensional fluid and later the non-recognition by fluid dynamicists of the meaning-fulness and general characteristics of two-dimensional turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ball, F. K., 1960: Control of inversion height by surface heating. Quart. J. Roy. Meteor. Soc., 86, 483–494.

    Article  Google Scholar 

  • Batchelor, G. K., 1956: The Theory of Homogeneous Turbulence. Cambridge, England, Cambridge University Press, 197 pp.

    Google Scholar 

  • Batchelor, 1969: Computation of the energy spectrum in homogeneous two-dimensional turbulence. High Speed Computing in Fluid Dynamics, Phys. Fluids Suppl. II, 233–239.

    Google Scholar 

  • Benton, George S., and Arthur B. Kahn, 1958: Spectra of large-scale atmospheric flow at 300 millibars. J. Meteor., 15, 404–410.

    Article  Google Scholar 

  • Charney, J. G., and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 68–75.

    Article  Google Scholar 

  • Clark, J. W., R. C. Stoeffler, and P. G. Vogt, 1969: Research on I instabilities, in Atmospheric Flow Systems Associated with Clear Air Turbulence. United Aircraft Research Laboratories, Rept. H910563-9 (Nasa Contract NASW-1582), East Hartford, Connecticut, 66pp.

    Google Scholar 

  • Crow, S. C., 1968: Viscoelastic properties of fine-grained incompressible turbulence. J. Fluid Mechs., 33, 1–20.

    Article  Google Scholar 

  • Deardorff, J. W., G. E. Willis, and D. K. Lilly, 1969: Laboratory investigation of non-steady penetrative convection. J. Fluid Mechs., 37, 7–31.

    Article  Google Scholar 

  • Deardorff, J. W., 1970: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mechs., 41, 453–480.

    Article  Google Scholar 

  • Drazin, P. G., and L. N. Howard, 1966: Hydrodynamic stability of parallel flow of inviscid fluid. Adv. Appl. Mech., 9, 1–89.

    Article  Google Scholar 

  • Fjørtoft, R., 1953: On the changes in the spectral distribution of kinetic energy for two-dimensional non-divergent flow. Tellus, 5, 225–230.

    Article  Google Scholar 

  • Hinze, J. O., 1959: Turbulence. New York, McGraw-Hill.

    Google Scholar 

  • Jeffreys, Harold, 1926: On the dynamics of geostrophic winds. Quart. J. Roy. Meteor. Soc., 52, 85–104.

    Article  Google Scholar 

  • Julian, Paul R., W. M. Washington, L. Hembree, and C. Ridley, 1970: On the spectral distribution of large-scale atmospheric kinetic energy. J. Atmos. Sci., 27, 376–387.

    Article  Google Scholar 

  • Kraichnan, Robert H., 1964: Decay of isotropic turbulence in the directinteraction approximation. Phys. Fluids, 7, 1030–1048.

    Article  Google Scholar 

  • Kraichnan, Robert H., 1965: Lagrangian-history closure approximation for turbulence. Phys. Fluids, 8, 575–598.

    Article  Google Scholar 

  • Kraichnan, Robert H., 1966: Isotropic turbulence and inertial-range structure. Phys. Fluids, 9, 1728–1752.

    Article  Google Scholar 

  • Kraichnan, Robert H., 1967: Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 1417–1423.

    Article  Google Scholar 

  • Kraichnan, Robert H., 1968: Convergents to infinite series in turbulence theory. Physical Rev., 174, 240–246.

    Article  Google Scholar 

  • Kraus, E. B., and J. S. Turner, 1967: A one-dimensional model of the seasonal thermocline. Part II. The general theory and its consequences. Tellus, 19, 98–106.

    Article  Google Scholar 

  • Krishnamurti, T. N., 1968: A calculation of percentage area covered by convective clouds from moisture convergence. J. Appl. Meteor., 7, 184–195.

    Article  Google Scholar 

  • Kung, E. C., 1966a: Kinetic energy generation and dissipation in the large-scale atmospheric circulation. Mon. Weather Rev., 94, 67–82.

    Article  Google Scholar 

  • Kung, E. C., 1966b: Large-scale balance of kinetic energy in the atmosphere. Mon. Weather Rev., 94, 627–640.

    Article  Google Scholar 

  • Kung, E. C., 1967 Diurnal and long-term of the kinetic energy generation and dissipation for a five-year period. Mon. Weather Rev., 95, 593–606.

    Article  Google Scholar 

  • Kung, E. C., 1969: Further study on the kinetic energy balance. Mon. Weather Rev., 97, 573–581.

    Article  Google Scholar 

  • Kuo, H. L., 1965: On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Atmos. Sci., 22, 40–63.

    Article  Google Scholar 

  • Lee, T. D., 1952: On some statistical properties of hydrodynamicaI and magneto-hydrodynamical fields. Quart. Appl. Math., 10, 69–74.

    Google Scholar 

  • Leith, C. E., 1969: Numerical simulation of turbulent flow. In Properties of Matter under Unusual Conditions. New York, John Wiley, 267–271.

    Google Scholar 

  • Lilly, D. K., 1966: On the application of the eddy viscosity concept in the inertial sub-range of turbulence. NCAR Ms. No. 123 (January), 19 pp.

    Google Scholar 

  • Lilly, D. K., 1967: The representation of small-scale turbulence in numerical simulation experiments. In Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences, IBM Data Processing Division, White Plains, N.Y., 195–210.

    Google Scholar 

  • Lilly, D.K., and Hans A. Panofsky, 1967: Summary of progress in research on atmospheric turbulence and diffusion. Trans. Amer. Geophy. Union, 48, 449–453.

    Google Scholar 

  • Lilly, D. K., 1968; Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292–309.

    Article  Google Scholar 

  • Lilly, D. K., 1969: Numerical simulation of two-dimensional turbulence. Phys. Fluids Suppl. II, 240–249.

    Google Scholar 

  • Lilly, D, K., and W. Toutenhoofd, 1969: The Colorado lee wave program. In Clear Air Turbulence and Its Detection. New York, Plenum Press, 232–245.

    Google Scholar 

  • Lilly, D. K., 1971: Numerical simulation of developing and decaying two-dimensional turbulence. Accepted for publication in J. Fluid Mechs.

    Google Scholar 

  • Lorenz, Edward N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141.

    Article  Google Scholar 

  • Lorenz, Edward N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289–307.

    Article  Google Scholar 

  • Lumley, J. L., and H. A. Panofsky, 1964: The Structure of Atmospheric Turbulence. New York, John Wiley.

    Google Scholar 

  • Manabe, S., and Strickler, R., 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361–385.

    Article  Google Scholar 

  • Manabe, S., and J. Smagorinsky, 1967: Simulated climatology of a general circulation model with a hydrologic cycle. II. Analysis of the tropical atmosphere. Mon. Weather Rev., 95, 155–169.

    Article  Google Scholar 

  • Manabe, S., J. L. Holloway, and H. M. Stone, 1970: Tropical circulation in a time-integration of a global model of the atmosphere. J. Atmos. Sci., 27, 580–613.

    Article  Google Scholar 

  • Miyakoda, K., J. Smagorinsky, R. F. Strickler, and G. D. Hembree, 1969: Experimental extended predictions with a nine-level hemispheric model. Mon. Weather Rev., 93, 1–76.

    Article  Google Scholar 

  • Newton, C. W., 1969: The role of extratropical disturbances in the global atmosphere. In The Global Circulation of the Atmosphere, ed. G. A. Corby, London, Salisbury Press, 137–158.

    Google Scholar 

  • Ogura, Y., 1958: On the isotrophy of large-scale disturbances in the upper troposphere. J. Meteor., 15, 375–382.

    Article  Google Scholar 

  • Ogura, Y., 1963: A consequence of the zero-fourth-cumuI ant approximation in the decay of isotropic turbulence. J. Fluid Mechs., 16, 33–40.

    Article  Google Scholar 

  • Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones. J. Atmos. Sci., 26, 3–40.

    Article  Google Scholar 

  • Orszag, Steven A., 1970: Transform method for the calculation of vectorcoupled sums: Application to the spectral form of the vorticity equation. J. Atmos. Sci., 27, 890–895.

    Article  Google Scholar 

  • Panofsky, H. A., J. A. Dutton, K. H. Hemmerich, G. McCreary, and N. V. Loving, 1968: Case studies of the distribution of CAT in the troposphere and stratosphere. J. Appl. Meteor., 7, 384–389.

    Article  Google Scholar 

  • Prophet, David T., 1970: High allitude clear air turbulence probability based on temperature profiles and rawinsonde ascensional rates. Mon. Weather Rev., 98, 704–707.

    Article  Google Scholar 

  • Reiter, E. R., and A. Burns, 1966: The structure of clear air turbulence derived from “TOPCAT” aircraft measurements. J. Atmos. Sci., 23, 206–212.

    Article  Google Scholar 

  • Riehl, H., and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6, 503–538.

    Google Scholar 

  • Rosenthal, S. L., 1970: A circularly symmetric primitive equation model of tropical cyclone development containing an explicit water vapor cycle. Mon. Weather Rev., 98, 643–663.

    Article  Google Scholar 

  • Scotti, R. S., and G. M. Corcos, 1969: Measurements on the growth of small disturbances in a stratified shear layer. Radio Sci., 4, 1309–1313.

    Article  Google Scholar 

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev., 91, 99–164.

    Article  Google Scholar 

  • Smagorinsky, J., S. Manabe, and J. L. Holloway, 1965: Numerical results from a nine-1 eve I general circulation model of the atmosphere. Mon. Weather Rev., 93, 727–768.

    Article  Google Scholar 

  • Thorpe, S. A., 1969: Experiments on the stability of stratified shear flows. Radio Sci., 1327–1331.

    Google Scholar 

  • Turner, J. S., and Kraus, E. B., 1967: A one-dimensional model of the seasonal thermocline. Part I. A laboratory experiment and its interpretation. Tellus, 19, 88–97.

    Article  Google Scholar 

  • Von Neumann, J., and R. D. Richtmyer, 1950: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys., 21, 232–237.

    Article  Google Scholar 

  • Ward, Fred, 1964: General circulation of the solar atmosphere from observational evidence. Pure Appl. Geophys., 58, 157–186.

    Article  Google Scholar 

  • Ward, Fred, 1965: The general circulation of the solar atmosphere and the maintenance of the equatorial acceleration. Astrophys. J., 141, 534–547.

    Article  Google Scholar 

  • Winn-Nielsen, A., 1967: On the annual variation and spectral distribution of atmospheric energy. Tellus, 19, 540–559.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Lilly, D.K. (1973). Lectures in Sub-Synoptic Scales of Motion and Two-Dimensional Turbulence. In: Morel, P. (eds) Dynamic Meteorology. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-2599-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-2599-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-2601-7

  • Online ISBN: 978-94-010-2599-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics