Skip to main content

Effects of Density Differences on Environmental Diffusion

  • Chapter
Turbulent Diffusion in the Environment

Part of the book series: Geophysics and Astrophysics Monographs ((GAAM,volume 3))

  • 284 Accesses

Abstract

Heating or cooling of fluid usually causes density changes which in turn affect body forces acting on fluid elements, notably the force of gravity. A particle warmer than its environment usually becomes lighter and experiences an Archimedean buoyancy force, while a cooler and therefore heavier parcel becomes negatively buoyant. Such phenomena affect environmental diffusion in three different ways:

  1. (1)

    By influencing the energy balance of turbulent motions. Buoyancy forces may produce or absorb turbulent energy and are therefore a factor in determining the intensity of atmospheric and oceanic turbulence.

  2. (2)

    By influencing the velocity history of wandering fluid elements. Once a particle is lighter or heavier than its environment, it becomes subject to systematic vertical accelerations (upward or downward) and its velocity-autocorrelation is affected, with appropriate consequences for the diffusion of clusters of particles.

  3. (3)

    By influencing the bodily motion of larger hot or cold clouds, such as those discharged from factory chimneys. Buoyant plumes are known to rise and remove pollutants from ground level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batchelor, G. K.: 1953, Homogeneous Turbulence, Cambridge Univ. Press, London, 197 pp.

    Google Scholar 

  • Batchelor, G. K.: 1967, An Introduction to Fluid Dynamics, Cambridge Univ. Press, London, 615 pp.

    Google Scholar 

  • Briggs, G. A.: 1969, Plume Rise, U.S. Atomic Energy Commission, 81 pp.

    Google Scholar 

  • Bringfelt, B.: 1969, Atmos. Environ. 3, 609.

    Article  Google Scholar 

  • Chandrasekhar, S.: 1961, Hydrodynamic and Hydromagnetic Stability, Oxford Univ. Press, London, 652 pp.

    Google Scholar 

  • Csanady, G. T.: 1957, Ind. Eng. Chem. 49, 1453.

    Article  Google Scholar 

  • Csanady, G. T.: 1961, Int. J. Air Water Pollut. 4, 47.

    Google Scholar 

  • Csanady, G. T.: 1964, J. Atmospheric Sci. 21, 439.

    Article  Google Scholar 

  • Csanady, G. T.: 1965, J. Fluid Mech. 22, 225.

    Article  Google Scholar 

  • Csanady, G. T.: 1970, Water Res. 4, 79.

    Article  Google Scholar 

  • Csanady, G. T.: 1972, Effect of Plume Rise on Ground-Level Pollution, to be published.

    Google Scholar 

  • Hewson, E. W.: 1945, Quart. J. Roy. Meteorol. Soc. 71, 266.

    Article  Google Scholar 

  • Hilst, G. R. and Simpson, C. L.: 1958, J. Meteorol. 15, 125.

    Article  Google Scholar 

  • Lilly, D. K.: 1964, J. Atmospheric Sci. 21, 83.

    Article  Google Scholar 

  • Lumley, J. L. and Panofsky, H. A.: 1964, The Structure of Atmospheric Turbulence, Interscience Publishers, New York, 239 pp.

    Google Scholar 

  • Meteorology and Atomic Energy: 1955, U.S. Atomic Energy Commission Report, 169 pp

    Google Scholar 

  • Moore, D. J.: 1969, Phil. Trans. Roy. Soc. A265 245.

    Google Scholar 

  • Morton, B. R., Taylor, G. I., and Turner, J. S.: 1956, Proc. Roy. Soc. A234, 1.

    Article  Google Scholar 

  • Priestley, C. H. B.: 1959, Turbulent Transfer in the Lower Atmosphere, Univ. Chicago Press, Chicago, 130 pp.

    Google Scholar 

  • Richards, J. M.: 1963, Int. J. Air Water Poll. 7, 17.

    Google Scholar 

  • Scorer, R. S.: 1958, Natural Aerodynamics,Pergamon Press, 312 pp.

    Google Scholar 

  • Sherlock, R. H. and Stalker, E. A.: 1940, Mech. Engr. 62, 455.

    Google Scholar 

  • Slawson, P. R. and Csanady, G. T.: 1967, J. Fluid Mech. 28, 311.

    Article  Google Scholar 

  • Slawson, P. R. and Csanady, G. T.: 1971, J. Fluid. Mech. 47, 33.

    Article  Google Scholar 

  • Starr, V. P.: 1968, Physics of Negative Viscosity Phenomena, McGraw-Hill Book Co. New York, 256 pp.

    Google Scholar 

  • Steward, N. G., Gale, H. J., and Crooks, R. N.: 1958, Int. J. Air Water Pollut. 1, 87.

    Google Scholar 

  • Townsend, A. A.: 1956, The Structure of Turbulent Shear Flow, Cambridge Univ. Press, London, 315 pp.

    Google Scholar 

  • Tsang, G.: 1971, Atmos. Environ. 5, 445.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1973 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Csanady, G.T. (1973). Effects of Density Differences on Environmental Diffusion. In: Turbulent Diffusion in the Environment. Geophysics and Astrophysics Monographs, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-2527-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-2527-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-277-0261-6

  • Online ISBN: 978-94-010-2527-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics