Skip to main content

Creep in Glassy Polymers

  • Chapter

Part of the book series: Materials Science Series ((MASCSE))

Abstract

Creep in plastics is one manifestation of their viscoelastic nature, which is, in turn, a characteristic feature of the macroscopic deformation behaviour of polymeric materials in general. The term ‘creep’ was adapted from its use in relation to the behaviour of metals, for which it designates the time-dependent component of the strain that is observed as a result of prolonged stressing. The initial, nearly instantaneous, strain is elastic in nature and that which develops later is very largely ‘plastic’, or irreversible. No such convenient and logical subdivision of the deformation of plastics is possible. Most aspects of their deformational behaviour are so severely time-dependent that the isolation of a distinct elastic component or a region of genuinely constant modulus is possible only under very special experimental conditions and ‘creep’ means the entire strain caused by an applied force. In contrast to its use in relation to metals, there is no implication that the deformations are irreversible, despite the broad classification of ‘viscoelastic’ in which the conjunction of ‘visco’ and ‘elastic’ could be taken to imply a viscous, or irreversible constituent. It is apparent that words and definitions are often chosen for their pictorial quality rather than for their explicit meaning, even in scientific contexts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Bibliography

  1. Williams, M. L., Landel, R. F. and Ferry, J. D. (1955). ‘The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids’, J. Am. Chem. Soc., 77, 3701.

    Article  Google Scholar 

  2. McCrum, N. G. and Morris, E. L. (1964). ‘On the measurement of the activation energies for creep and stress relaxation’, Proc. Roy. Soc., A., 281, 258.

    Article  Google Scholar 

  3. Findley, W. N. (1944). ‘Creep characteristics of plastics’, ASTM Symposium on Plastics, p. 18.

    Google Scholar 

  4. Boltzmann, L. (1876). ‘Zur Theorie der elastischen Nachwirkung’, Pogg. Ann. Physik., 7, 624.

    Google Scholar 

  5. Findley, W. N. and Khosla, G. (1955). ‘Application of the superposition principle and theories of mechanical equation of state, strain, and time hardening to creep of plastics under changing loads’, J. App. Phys., 26, 821.

    Article  Google Scholar 

  6. Findley, W. N. and Gjelsvik, J. (1962). ‘A versatile biaxial testing machine for investigation of plasticity, creep or relaxation of materials under variable loading paths’, Proc. ASTM, 62, 1103.

    Google Scholar 

  7. Mills, W. H. and Turner, S. ‘Tensile creep testing of plastics’. Paper 23, Symposium on ‘Development in Materials Testing Machine Design’. Manchester, 7–10 September, 1965.

    Google Scholar 

  8. Thomas, D. A. (1969). ‘Uniaxial compressive creep studies’, Plastics and Polymers, 37, 485.

    Google Scholar 

  9. O’Connor, D. G. and Findley, W. N. (1962). ‘Influence of normal stress on creep in tension and compression of polyethylene and rigid poly (vinyl chloride) copolymer’, J. Eng. Ind., 84, 237.

    Article  Google Scholar 

  10. Dunn, C. M. R. and Turner, S. ‘Apparatus and technique for the accurate measurement of modulus and creep in flexure’. To be published.

    Google Scholar 

  11. Mallon, P. J. Ph.D. Thesis, Queen’s University of Belfast, 1970; Mallon, P. J. and Benham, P. P. (1972). ‘The development and results of a shear creep for plastics’. Plastics and Polymers, 40, 22.

    Google Scholar 

  12. Thomas, D. A. and Turner, S. (1969). ‘Experimental technique in uniaxial tensile creep testing’, Chapter II of Testing of Polymers, vol. IV, ed. W. E. Brown, Interscience, New York.

    Google Scholar 

  13. Andrews, R. D. (1952). ‘Correlation of dynamic and static measurements on rubberlike materials’, Ind. Eng. Chem., 44, 707.

    Article  Google Scholar 

  14. Ewing, P., Turner, S. and Williams, J. G. (1972). ‘Combined tension/torsion studies on polymers. Apparatus and preliminary results for polythene’, J. of Strain Analysis, 7, 9.

    Article  Google Scholar 

  15. Turner, S. (1968). ‘A system of deformation data for rational engineering design with plastics’, Polymer Eng. & Science, 8, 101.

    Article  Google Scholar 

  16. Marin, J., Pao, Y.-H. and Cuff, G. (1951). ‘Creep properties of Lucite and Plexiglas for tension, compression, bending and torsion’, Trans. Am. Soc. Mech. Engs., 73, 705.

    Google Scholar 

  17. Benham, P. P. and McCammond, D. (1971). ‘Studies of creep and contraction ratio in thermoplastics’, Plastic & Polymers, 39, 130.

    Google Scholar 

  18. Turner, S. (1964). ‘Creep in thermoplastics. Polythene’, British Plastics, 37, 501.

    Google Scholar 

  19. Bergen, R. L. (1967). ‘Creep of thermoplastics in the glassy region. Stress as a reduced variable’, SPE Journal, 23, 57.

    Google Scholar 

  20. Bueche, F. (1956). ‘Young’s modulus of semi-crystalline polymers’, J. Poly. Sci., 22, 113.

    Article  Google Scholar 

  21. McLoughlin, J. R. and Tobolsky, A. V. (1952). ‘The viscoelastic behaviour of polymethylmethacrylate’, J. Coll. Sci., 7, 555.

    Article  Google Scholar 

  22. Darlington, M. W. and Saunders, D. W. (1970). ‘An apparatus for the measurement of tensile creep and contraction ratios in small non-rigid specimens’, Journal of Physics E: Scientific Instruments, 3, 511.

    Article  Google Scholar 

  23. Darlington, M. W. and Saunders, D. W. (1971). ‘Creep in oriented thermoplastics’, J. Macromol. Sci. Phys., B5(2), 207.

    Google Scholar 

  24. Raumann, G. and Saunders, D. W. (1961). ‘The anisotropy of Young’s modulus in drawn polyethylene’, Proc. Phys. Soc., 77, 1028.

    Article  Google Scholar 

  25. Wright, H. M.Sc. Thesis, UMIST, 1967.

    Google Scholar 

  26. Bonnin, M. J., Dunn, C. M. R. and Turner, S. (1969). ‘A comparison of torsional and flexural deformations in plastics’, Plastics and Polymers, 37, 517.

    Google Scholar 

  27. Turner, S. (1971). Journal of Applied Polymer Science Symposia No. 17. Mechanical Performance and Design in Polymers, p. 213.

    Google Scholar 

  28. Benham, P. P. and Hutchinson, S. J. (1970). ‘Cyclic creep and fracture of polyvinyl chloride’, Plastics and Polymers, 38, 259.

    Google Scholar 

  29. Vincent, P. I. ‘Localised plastic deformation and fracture’, T.R. No. 97, Division of Polymer Science, Case Western Reserve University, Cleveland, Ohio.

    Google Scholar 

  30. Lockett, F. J. and Turner, S. (1971). ‘Non linear creep of plastics’, J. Mech. Phys. Solids, 19, 201.

    Article  Google Scholar 

  31. Turner, S. (1966). ‘The strain response of plastics to complex stress histories’, Polymer Engineering and Science, 6, 306.

    Article  Google Scholar 

  32. Thomas, D. A. Unpublished results.

    Google Scholar 

  33. Lockett, F. J. Private communication.

    Google Scholar 

  34. Eyring, H. (1936). J. Chem. Phys., 4, 283.

    Article  Google Scholar 

  35. The following contain many references to earlier sources and are useful reviews of many aspects of viscoelasticity theory

    Google Scholar 

  36. Passaglia, E. and Knox, J. R. (1964). ‘Viscoelastic behaviour and time-temperature relationships’, Ch. 3, Engineering Design for Plastics, ed. Baer, Reinhold, New York.

    Google Scholar 

  37. Hilton, H. H. ‘Viscoelastic analysis’, Ch. 4, ibid.

    Google Scholar 

  38. Alfrey, T., Jnr (1948). ‘Mechanical behaviour of high polymers’, Interscience, New York.

    Google Scholar 

  39. Leaderman, H. (1958). ‘Viscoelasticity phenomena in amorphous high polymeric systems’, Ch. 1, Rheology, VII, ed. Eirich, Academic Press, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Applied Science Publishers Ltd

About this chapter

Cite this chapter

Turner, S. (1973). Creep in Glassy Polymers. In: Haward, R.N. (eds) The Physics of Glassy Polymers. Materials Science Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-2355-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-2355-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-2357-3

  • Online ISBN: 978-94-010-2355-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics