Skip to main content
  • 137 Accesses

Abstract

Recent experimental and theoretical advances have provided some additional insight into the value of local field theories for the description of actual phenomena. It is suggested, on the basis of some of these results, that there is evidence that the concept of the position of an elementary system may have phenomenological importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.D. Newton and E.P. Wigner, Rev. Mod. Phys. 21, 400 (1949).

    Article  ADS  MATH  Google Scholar 

  2. J.M. Jauch and C. Piron, Helv. Phys. Acta 40 561 (1967).

    Google Scholar 

  3. W.O. Amrein, Helv. Phys. Acta 42 149 (1968).

    Google Scholar 

  4. See, for example, S. Schweber, “An Introduction to Relativistic Quantum Field Theory”, Harper & Row, New York, 1964.

    Google Scholar 

  5. M. Gell-Mann, Cal Tech Report CTSL-20 (1961), unpublished.

    Google Scholar 

  6. Y. Ne'eman, Nuc. Phys. 26 222 (1961).

    Article  MathSciNet  Google Scholar 

  7. G. Zweig, CERN Preprint Th/401 (1964), unpublished. M. Gell-Mann, Phys. Lett. 8 214 (1964).

    Google Scholar 

  8. M. Gell-Mann, Phys. Rev. 125 1067 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. W.I. Weisberger, Phys. Rev. Lett. 14 1047 (1965). S.L. Adler, Phys. Rev. Lett. 14 1051 (1965).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. N. Cabibbo and L.A. Radicati, Phys. Lent. 19 697 (1966).

    Article  ADS  Google Scholar 

  11. R.F. Dashen and M. Gell-Mann, Phys. Lett. 17 145 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  12. F. Gürsey and L.A. Radicati, Phys. Lett. 13 173 (1964). A. Pais, Phys. Rev. Lett. 13 175 (1964). F. Gursey, A. Pais and L.A. Radicati, Phys. Rev. Lett. 13 299 (1964).

    Article  Google Scholar 

  13. S. Okubo, Prog. Theor. Phys. 27 949 (1962); cf. also ref. 5.

    Article  ADS  MATH  Google Scholar 

  14. See, for example, F.J. Dyson, “Symmetry Groups in Nuclear and Particle Physics”, W.A. Benjamin, Inc. New York (1966), for a review and reprints of relevant papers.

    Google Scholar 

  15. K.J. Barnes, P. Carruthers and F. von Hippel, Phys. Rev. Lett. 14 82 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  16. H.J. Lipkin and S. Meshkov, Phys. Rev. Lett. 14 670 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  17. H. Harari, D. Horn, M. Kugler, H.J. Lipkin and S. Meshkov, Phys. Rev. 146 1052 (1966).

    Article  ADS  Google Scholar 

  18. H.J. Lipkin and F. Scheck, Phys. Rev. Lett. 16 71 (1966).

    Article  ADS  Google Scholar 

  19. J.J.J. Kokkedee and L. Van Hove, Nuovo Cimento 42 711 (1966).

    Article  ADS  Google Scholar 

  20. E.M. Levin and L.L. Frankfurt, Zhur. Eksp. i Theory. Fiz. Pisma v Redak. 2 105 (1965) (English translation JETP Lett. 2 65 (1965).

    Google Scholar 

  21. R.F. Dashen and M. Gell-Mann, Phys. Lett. 17 142 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  22. N. Cabibbo, L. Horwitz and Y. Ne'eman, Phys. Lett. 22 336 (1966)-To be called CHN in the following.

    Article  ADS  Google Scholar 

  23. M. Breidenbach, et al, Phys. Rev. Lett. 23 935 (1969); G. Miller, Report No. SLAC 129 (1970).

    Article  ADS  Google Scholar 

  24. J.D. Bjorken, Phys. Rev. 179, 1547 (1969).

    Article  ADS  Google Scholar 

  25. R.P. Feynman, Phys. Rev. Lett. 23 1415 (1969) and Proc. of Tthe Third High Energy Collision Conf. Stony Brook, p. 237, Gordon and Breach, New York (1970).

    Article  ADS  Google Scholar 

  26. Y. Frishman, Phys. Rev. Lett. 25, 966 (1970).

    Article  ADS  Google Scholar 

  27. H. Fritzsch and M. Gell-Mann, in “International Conference on Duality and Symmetry in Hadron Physics” ed. E. Gotsman, Weizmann Science Press, Jerusalem (1971).

    Google Scholar 

  28. S. Coleman, Phys. Lett. 19 144 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  29. J. Melosh IV, “Quarks: Currents and Constituents”, Thesis, California Institute of Technology, 1973.

    Google Scholar 

  30. L. Gomberoff, L.P. Horwitz and Y. Ne'eman, Phys. Lett. 45 B, 131 (1973); more complete treatment is to be published in the Phys.Rev. (in press).

    ADS  Google Scholar 

  31. See, for example, Y. Ne'eman, “Algebraic Theory of Particle Physics”, p. 233, W.A. Benjamin, Inc. New York (1967).

    Google Scholar 

  32. F.J. Gilman and M. Kugler, Phys. Rev. Lett. 30 518 (1973).

    Article  ADS  Google Scholar 

  33. F.J. Gilman, M. Kugler, and S. Meshkov, “The transformation between current and constituent quarks and transition between hadrons” Phys. Rev. (in press).

    Google Scholar 

  34. L.L. Foldy and J.A. Wouthuysen, Phys. Rev. 78, 29 (1950).

    Article  ADS  MATH  Google Scholar 

  35. P.A.M. Dirac, Rev. Mod. Phys. 21 392 (1949).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. J.B. Kogut and D.E. Soper, Phys. Rev. D1 2901 (1970).

    ADS  Google Scholar 

  37. L. Susskind, Phys. Rev. 165 1535 (1968).

    Article  ADS  Google Scholar 

  38. J.D. Bjorken, in “International Conference on Duality and Symmetry in Hadron Physics”, ed. E. Gotsman, Weizmann Science Press, Jerusalem (1971).

    Google Scholar 

  39. L.C. Biedenharn, M.Y. Han and H. Van Dam, “Generalization and Interpretation of Dirac’s Positive Energy Relativistic Wave Equation,” Duke University Preprint 1973.

    Google Scholar 

  40. P.A.M. Dirac, Proc. Roy. Soc. (London) A322 435 (1971).

    ADS  Google Scholar 

  41. L.C. Biedenharn and H. van Dam, “Galilean Subdynamics and the Dual Resonance Model”” Duke University Preprint, July 1973.

    Google Scholar 

  42. J. Kogut and L. Susskind, Phys. Lett. 8C (Physics Reports) 75 (1973).

    Google Scholar 

  43. N. Cabibbo and M. Testa, Phys. Lett. 42B 369 (1972).

    ADS  Google Scholar 

  44. M. Testa, CERN preprint TH/1540, (1972).

    Google Scholar 

  45. V.J. Reddy, L. Gomberoff, L.P. Horwitz and Y. Ne'eman, “Algebra of Strenghts Generated by Bilocal Currents Acting on Constituent States II: Universality” Tel-Aviv University preprint TAUP-396-73 (1973).

    Google Scholar 

  46. S.P. deAlwis, Nuc. Phys. B55 427 (1973).

    Article  ADS  Google Scholar 

  47. T.T. Wu and C.N. Yang, Phys. Rev. 137 B 708 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  48. N. Byers and C.N. Yang, Phys. Rev. 142, 976 (1966).

    Article  ADS  Google Scholar 

  49. J. Benecke, T.T. Chou, C.N. Yang and E. Yen, Phys. Rev. 188 2159 (1969).

    Article  ADS  Google Scholar 

  50. M. Gell-Mann and F. Low, Phys. Rev. 95 1300 (1954). N.N. Bogoliubov and D.V. Shirkov, “Introduction to the Theory of Quantized Fields,” Interscience, New York (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. D.J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343(1973).

    Article  ADS  Google Scholar 

  52. K. Wilson, Phys. Rev. 179, 1499 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  53. S. Coleman and D.J. Gross, Phys. Rev. Lett. 31 851 (1973).

    Article  ADS  Google Scholar 

  54. D. Amati and M. Testa, CERN preprint TH/1770, 31 Oct. 1973.

    Google Scholar 

  55. H. Fritzsch and M. Gell-Mann, Proc. of the XVI International Conference on High Energy Physics, Chicago, NAL-Sept.-6-13 (1972).

    Google Scholar 

  56. This question was discussed for a first-quantized non-Abelian gauge theory by L.P. Horwitz, Helv. Phys. Acta 32, 144 (1966). The one-particle Hamiltonian was shown not to be an observable since its expectation value is not gauge invariant under gauge transformations of the first kind. A similar phenomenon occurs in electromagnetism under gauge transformations of the second kind; in this case it is clear that the energy of the field must be included (since it carries momentum). This mechanism is also responsible for the non-invariance of the Hamiltonian of a particle in a non-Abelian gauge field; the canonical momentum is altered by a gauge transformation of the first kind. Hence it is difficult to define the “particle” independently of the field. I wish to thank Dr.A. Casher for a recent discussion of this point.

    MathSciNet  Google Scholar 

  57. A Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn and V.F.Weisskopf, M.I.T. preprint CTP, 387, Nov. 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Horwitz, L. (1974). Phenomenological Aspects of Localizability. In: Enz, C.P., Mehra, J. (eds) Physical Reality and Mathematical Description. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-2274-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-2274-3_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-2276-7

  • Online ISBN: 978-94-010-2274-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics