Skip to main content

The Petrologic Nature of the Lower Oceanic Crust and Upper Mantle

  • Conference paper
Geodynamics of Iceland and the North Atlantic Area

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 11))

Abstract

The compositions of the lower oceanic crust and upper mantle are investigated using data from high pressure experiments of compressional and shear wave velocities in rocks. Four compositional models for the lower oceanic crust are considered: 1) partially serpentinized peridotite, 2) gabbro, 3) metabasalt and metagabbro and 4) an ophiolite model consisting of metamorphosed sheeted dikes overlying late differentiates and cumulate gabbros. Comparisons of compressional wave velocities (Vp) from dredged oceanic rocks with layer 3 refraction velocities show that perido-tites 30 to 40% serpentinized, unaltered gabbro, metagabbro and metabasalt all have velocities similar to observed lower crustal velocities. Thus compressional wave velocity measurements alone will not distinguish between the various crustal models. Although only a limited amount of refraction data on shear wave velocities (Vs) are available, it appears that lower crustal Poisson’s ratios, calculated from Vp and Vg, are significantly lower than measured values in partially serpentinized peridotite and unaltered gabbro. In support of models 3 and 4 it is shown that Poisson’s ratios of metabasalt and metagabbro, on the other hand, agree well with seismic data from the upper portion layer 3. The low Poisson’s ratios reported for the lower crust of Iceland (∼ 0.27) suggest that metabasalt and metagabbro are abundant constituents of layer 3. The 74 km/sec layer, often found between layer 3 and oceanic upper mantle in the Pacific Ocean, is interpreted as most likely being composed of peridotite, 10 to 20% serpentinized, or feldspathic peridotite. Compressional and shear wave velocities in eclogite and peridotite at appropriate pressures are similar to oceanic upper mantle velocities. An upper mantle of peridotite or dunite composition is favored, however, in regions where strong upper mantle anisotropy is observed.

This work has been supported in part by the Office of Naval Research and the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Raitt, The Crustal Rocks, in: The Sea, ed. by M. N. Hill, New York, 1963.

    Google Scholar 

  2. X. LePichon, R. E. Houtz, C. L. Drake and J. E. Nafe, J. Geophys. Res., 70, 319, 1965.

    Article  Google Scholar 

  3. G. Palmason, Crustal Structure of Iceland from Explosion Seismology, Soc. Sci. Islandica, 40, Reykjavik, 1971.

    Google Scholar 

  4. G. H. Sutton, G. L. Maynard and D. M. Hussong, Widespread Occurrence of a High-Velocity Basal Layer in the Pacific Crust Found with Repetitive Sources and Sonobuoys, in: The Structure and Physical Properties of the Earth’s Crust, ed. by J. G. Heacock, AGU, Washington D.C., 1971.

    Google Scholar 

  5. N. I. Christensen, J. Geol., 80, 709, 1972.

    Article  Google Scholar 

  6. N. I. Christensen and M. H. Salisbury, Earth Planet. Sci. Lett., 19, 461, 1973.

    Article  Google Scholar 

  7. Tj. H. van Andel, J. Mar. Res., 264, l44, 1968.

    Google Scholar 

  8. H. H. Hess, History of the Ocearn Basins, in: Petrologic Studies. Buddington Vol., ed. by A. E. J. Engel, H. L. James and B. F. Leonard, Geol. Soc. Am., New York, 1962.

    Google Scholar 

  9. J. Ewing and M. Ewing, Bull. Geol. Soc. Am., 70, 291, 1959

    Article  Google Scholar 

  10. B. Gutenberg, Physics of the Earth’s Interior, Academic Press, New York, 1959.

    Google Scholar 

  11. P. J. Fox, E. Schreiber and J. J. Peterson, J. Geophys. Res., 78, 5155, 1973.

    Article  Google Scholar 

  12. N. I. Christensen, Marine Geol., 8, 139, 1970.

    Article  Google Scholar 

  13. J. R. Cann, Geophys. J. R. Astron. Soc., 15, 331, 1968.

    Google Scholar 

  14. A. Miyashiro, F. Shido and M. Ewing, Deep-Sea Res., 17, 109, 1970.

    Google Scholar 

  15. I. G. Gass, Nature, 220, 39, 1968.

    Article  Google Scholar 

  16. A. Gansser, Econ. Geol. Helv., 52, 659, 1959.

    Google Scholar 

  17. J. F. Dewey and J. M. Bird, J. Geophys. Res., 76, 3179, 1971.

    Article  Google Scholar 

  18. F. Birch, J. Geophys. Res., 65., 1083, 1960.

    Article  Google Scholar 

  19. F. Birch, J. Geophys. Res., 66 2199, 1961.

    Article  Google Scholar 

  20. G. Simmons, J. Geophys. Res., 69, 1123, 1964.

    Article  Google Scholar 

  21. N. I. Christensen, J. Geophys. Res., 70, 6l47, 1965.

    Article  Google Scholar 

  22. N. I. Christensen, Bull. Geol. Soc. A57, 8l, 905, 1970.

    Article  Google Scholar 

  23. N. I. Christensen and G. H. Shaw, Geophys. J. R. Ast ron. Soc, 20, 271, 1970.

    Google Scholar 

  24. N. I. Christensen and R. Ramananantoandro, J. Geophys. Res., 76, 4003, 1971.

    Article  Google Scholar 

  25. R. S. Hart and F. Press, J. Geophys. Res., 78, 407, 1973.

    Article  Google Scholar 

  26. D. W. Forsyth and F. Press, J. Geophys. Res. 76, 7963, 1971.

    Article  Google Scholar 

  27. N. I. Christensen, J. Geophys. Res., 79, 407, 1914.

    Article  Google Scholar 

  28. N. I. Christensen, J. Geophys. Res., 71, 5921, 1966.

    Google Scholar 

  29. M. Kumazawa, H. Helmstaedt and K. Masaki, J. Geophys. Res., 76, 1231, 1971. ~

    Article  Google Scholar 

  30. N. I. Christensen, J. Geophys. Res., 71, 3549, 1966.

    Google Scholar 

  31. R. W. Raitt, G. G. Shor and T. J. G. Francis, J. Geophys. Res., 74, 3095, 1969.

    Article  Google Scholar 

  32. G. B. Morris, R. W. Raitt and G. G. Shor, J. Geophys. Res., 74, 4300, 1969.

    Article  Google Scholar 

  33. C. E. Keen and D. L. Barrett, Can. J. Earth Sci., 8, 1056, 1971.

    Article  Google Scholar 

  34. N. L. Carter, D. W. Baker and R. P. George Jr., SeTsmic Aniso-tropy, Flow, and Constitution of the Upper Mantle, in: Flow and Fracture of Rocks, ed. by H. C. Heard, I. Y. Borg, N. L. Carter and C. B. Raleigh, AGU, Washington D. C, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 D. Reidel Publishing Company, Dordrecht

About this paper

Cite this paper

Christensen, N.I. (1974). The Petrologic Nature of the Lower Oceanic Crust and Upper Mantle. In: Kristjansson, L. (eds) Geodynamics of Iceland and the North Atlantic Area. NATO Advanced Study Institutes Series, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-2271-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-2271-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-2273-6

  • Online ISBN: 978-94-010-2271-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics