Advertisement

Pitch Angle Diffusion of Relativistic Electrons in the Plasmasphere

  • George A. Kuck
Part of the Astrophysics and Space Science Library book series (ASSL, volume 44)

Abstract

Whistler mode electromagnetic waves, which are highly variable in both space and time, cause pitch angle diffusion of electrons. The effective diffusion coefficient can be radically different from the instantaneous diffusion coefficient since electrons both bounce and drift average the waves. Analysis of the time evolution of the 1.2 and 2.1 MeV electron pitch angle distributions following the October 28 and November 1, 1962, Russian high altitude nuclear tests allow the effective diffusion coefficients to be obtained for 1.75 ≤ L ≤ 2.5. The evolution is consistent with the assumption of scattering by broad band white noise near the principal cyclotron harmonic. The data for both electron energies can be explained by a diffusion coefficient related to a single power law frequency spectrum of the form B wave = Af −n, 1.4 ≤ n ≤ 1.7 above 300 Hz. Below 300 Hz, the power rises as a function of frequency.

Keywords

Wave Field Pitch Angle Relativistic Electron Effective Diffusion Coefficient Pitch Angle Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berg, L. E. and Soraas, F.: 1972, J. Geophys. Res. 77, 6708.ADSCrossRefGoogle Scholar
  2. Bewersdorff, A. B. and Sagalyn, R. C.: 1972, J. Geophys. Res. 77, 4732.CrossRefGoogle Scholar
  3. Cormier, R. J., Ulwick, J. C., Klobuchear, J. A., Pfister, W., and Keneshea, T. J.: 1965, in S. L. Valley (ed.), Handbook of Geophysics and Space Environments, Air Force Cambridge Research Laboratories, Bedford, Massachusetts.Google Scholar
  4. Davidson, G. T. and Hendricks, R. W., Jr.: 1971, in J. Claudis, G. T. Davidson, and L. L. Newkirk (eds.), The Trapped Radiation Handbook, Section 7, DNA 2524H, Defense Nuclear Agency, Washington, D.C.Google Scholar
  5. Dungey, J. W.: 1963, Planetary Space Sci. 11, 591.ADSCrossRefGoogle Scholar
  6. Giaconni, R., Paolini, F. R., Hadley, W. C., and Talbot, R., Jr.: 1964, A Research Program to Investigate Artificially Injected Trapped Radiation, AFCRL-64–917, Air Force Cambridge Research Laboratories, Bedford, Massachusetts, 30 October 1964.Google Scholar
  7. Gurnett, D. A.: 1966, J. Geophys. Res. 71, 5599.ADSGoogle Scholar
  8. Imhof, W. L.: 1968, J. Geophys. Res. 73 4167.ADSCrossRefGoogle Scholar
  9. Kaiser, T. R.: 1972, in B. M. McCormac (ed.), Earth’s Magnetospheric Processes, D. Reidel Publishing Company, Dordrecht, Holland, p. 340.Google Scholar
  10. Katz, L., Smart, D., Paolini, F. R., Giacconni, R., and Talbot, R., Jr.: 1964, in Space Research IV, North-Holland Publishing Company, Amsterdam, Holland, p. 646.Google Scholar
  11. Koons, H. C. and McPherson, D. A.: 1972, J. Geophys. Res. 77, 3475.ADSCrossRefGoogle Scholar
  12. Kuck, G. A.: 1973, Ph.D. Dissertation, Univ. of New Mexico.Google Scholar
  13. Lyons, L. R. and Thorne, R. M.: 1972, J. Geophys. Res. 77, 5608.ADSCrossRefGoogle Scholar
  14. Lyons, L. R., Thorne, R. M., and Kennel, C. F.: 1972, J. Geophys. Res. 77, 3455.ADSCrossRefGoogle Scholar
  15. Richtmyer, R. D. and Morton, K. W.: 1967, Difference Methods for Initial-Value Problems (2nd ed.), Interscience Publishers, New York.zbMATHGoogle Scholar
  16. Roberts, C. S.: 1966, in B. M. McCormac (ed.), Radiation Trapped in the Earth’s Magnetic Field, D. Reidel Publishing Company, Dordrecht, Holland, p. 403.Google Scholar
  17. Roberts, C. S.: 1968, in B. M. McCormac (ed.), Earth’s Particles and Fields, Reinhold Book Co., New York, p. 319.Google Scholar
  18. Roberts, C. S.: 1969, Rev. Geophys. 7, 305.ADSCrossRefGoogle Scholar
  19. Roederer, J. G.: 1970, Dynamics of Geomagnetically Trapped Radiation,Springer-Verlag, New York.Google Scholar
  20. Russell, C. T., Holtzer, R. E., and Smith, E. J.: 1970, J. Geophys. Res. 75, 755.ADSCrossRefGoogle Scholar
  21. Russell, C. T., McPherron, R. L., and Coleman, P. J., Jr.: 1972, Space Sci. Rev. 12, 810.ADSCrossRefGoogle Scholar
  22. Theodoridis, G. C. and Paolini, F. R.: 1967, Ann. Geophys. 23, 375.Google Scholar
  23. Thorne, R. M., Smith, E. J., Burton, R. K., and Holzer, R. W.: 1973, J. Geophys. Res. 78, 1581.ADSCrossRefGoogle Scholar
  24. Walt, M.: 1971, in J. Cladis, G. T. Davidson, and L. L. Newkirk (eds.), The Trapped Radiation Handbook, Section 6, DNA 2524H, Defense Nuclear Agency, Washington, D.C.Google Scholar
  25. West, H. I.: 1966, in B. M. McCormac (ed.), Radiation Trapped in the Earth’s Magnetic Field, D. Reidel Publishing Company, Dordrecht, Holland, p. 634.Google Scholar
  26. Whalen, B. A. and McDiarmid, I. B.: 1973, J. Geophys. Res. 78, 1608.ADSCrossRefGoogle Scholar
  27. Willard, H. R. and Kenney, J. F.: 1964, Geophysical Effects of High–Altitude Nuclear Explosions, Boeing Scientific Research Laboratories Report D1–82–0372, Seattle, Washington.Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht-Holland 1974

Authors and Affiliations

  • George A. Kuck
    • 1
  1. 1.ADC(XPQD)Ent AFBColorado SpringsUSA

Personalised recommendations