Skip to main content

The Convergence of Fact and Theory on Magnetospheric Convection

  • Conference paper
Correlated Interplanetary and Magnetospheric Observations

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 42))

Abstract

Since the early work of Dungey, Axford and Hines, and Piddington, the concept of magnetospheric convection has become more and more widely accepted as the fundamental driving force for magnetospheric processes. Although the early convection theories have been modified to include the effects of magnetospheric-ionospheric coupling, the original steady large-scale convection models remain largely intact. This paper discusses a variety of recent magnetospheric measurements which support the basic convection model. These measurements include the dynamics of thermal plasma, the drift patterns of medium-energy protons and electrons, and the direct measurement of magnetospheric electric fields by satellites and balloons. All of these measurements have added significantly to our understanding of convection processes, and taken collectively, they offer a fairly unified picture of magnetospheric convection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Axford, W. I.: 1969, Rev. Geophys. Space Phys. 7, 421.

    Article  ADS  Google Scholar 

  • Axford, W. I. and Hines, C. O.: 1961, Can. J. Phys. 39, 1433.

    Article  ADS  MathSciNet  Google Scholar 

  • Block, L. P.: 1967, Space Sci. Rev. 7, 198.

    Article  ADS  Google Scholar 

  • Brice, N. M.: 1967, J. Geophys. Res. 72, 5193.

    Article  ADS  Google Scholar 

  • Carpenter, D. L.: 1962, ‘The Magnetosphere During Magnetic Storms’, Rep. SEL-62-059, Radio Science Lab., Stanford Univ., Stanford, Calif.

    Google Scholar 

  • Carpenter, D. L., Stone, K., Siren, J. C., and Crystal, T. L.: 1972, J. Geophys. Res. 77, 2819.

    Article  ADS  Google Scholar 

  • Chappell, C. R.: 1972, Rev. Geophys. Space Phys. 10, 951.

    Article  ADS  Google Scholar 

  • Chappell, C. R., Harris, K. K., and Sharp, G. W.: 1970, J. Geophys. Res. 75, 3848.

    Article  ADS  Google Scholar 

  • Dungey, J. W.: 1961, Phys. Rev. Letters 6, 47.

    Article  ADS  Google Scholar 

  • Fairfield, D. H.: 1968, J. Geophys. Res. 73, 7329.

    Article  ADS  Google Scholar 

  • Falthammer, C. G.: 1972, in B. M. McCormac (ed.), Earth’s Magnetospheric Processes, D. Reidel Publ. Co., Dordrecht-Holland, p. 16.

    Chapter  Google Scholar 

  • Gurnett, D. A. and Frank, L. A.: 1973, J. Geophys. Res. 78, 145.

    Article  ADS  Google Scholar 

  • Heppner, J. P.: 1972, ‘Electric Fields in the Magnetosphere’, Goddard Preprint X-645-72-154.

    Google Scholar 

  • Kavanagh, L. D., Jr., Freeman, Jr., J. W., and Chen, A. J.: 1968, J. Geophys. Res. 73, 5511.

    Article  ADS  Google Scholar 

  • McIlwain, C. E.: 1972, in B. M. McCormac (ed.), Earth’s Magnetospheric Processes, D. Reidel Publ. Co., Dordrecht-Holland, p. 268.

    Chapter  Google Scholar 

  • Mead, G. D.: 1964, J. Geophys. Res. 69, 1181.

    Article  MATH  ADS  Google Scholar 

  • Morgan, M. G., Brown, P. E., Johnson, W. C., and Taylor, Jr., H. A.: 1973, ‘Electron Densities and Electric Fields in the Outer Equatorial Plasmasphere Deduced from Whistlers Observed on the Ground Compared to Ion-Mass, VLF, and Electric Field Observations on a Polar-Orbiting Spacecraft near the same Geomagnetic Meridian’, Preprint.

    Google Scholar 

  • Mozer, F. S.: 1970, Planetary Space Sci. 18, 259.

    Article  ADS  Google Scholar 

  • Mozer, F. S. and Lucht, P.: 1973, ‘The Average Auroral Zone Electric Field’, Preprint, Univ. of Calif., Spa. Sci. Lab. Series 14, Issue 21.

    Google Scholar 

  • Nishida, A.: 1966, J. Geophys. Res. 71, 5669.

    ADS  Google Scholar 

  • Schield, M. A., Freeman, J. W., and Dessler, A. J.: 1969, J. Geophys. Res. 74, 247.

    Article  ADS  Google Scholar 

  • Vasyliunas, V. M.: 1972, in B. M. McCormac (ed.), Earth’s Magnetospheric Processes, D. Reidel Publ. Co., Dordrecht-Holland, p. 29.

    Chapter  Google Scholar 

  • Wolf, R. A.: 1970, J. Geophys. Res. 75, 4677.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 D. Reidel Publishing Company, Dordrecht-Holland

About this paper

Cite this paper

Chappell, C.R. (1974). The Convergence of Fact and Theory on Magnetospheric Convection. In: Page, D.E. (eds) Correlated Interplanetary and Magnetospheric Observations. Astrophysics and Space Science Library, vol 42. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-2172-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-2172-2_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-2174-6

  • Online ISBN: 978-94-010-2172-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics