Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 9))

Abstract

We consider an infinite array of ions, each fixed at a point of the lattice Zv,v = 1,2 or 3. Each ion has no degrees of freedom except its spin, 1/2, which is described by a spinor, that is a unit vector in \(C^2 ,\left( {\mathop {\dot 1}\limits_0 } \right)\) denoting spin up, ↑, and \(\left( {\mathop 1\limits^0 } \right)\) spin down, ↓. A typical “product state” of all the ions can be pictured:

$$ ... \otimes \uparrow \otimes \nearrow \otimes \nwarrow \otimes \uparrow \otimes \nwarrow \otimes... $$

The “observables” associated with an ion j ε Zv are the spins \( J\mathop{j}\limits^{\alpha } = 1/2{{\sigma }^{\alpha }} \) regarded as acting on the j th factor in the product; here, α = 1,2 or 3 are the 3 spin (or isobaric spin) directions. For each ion j, its observables generate the 4 dimensional C* -algebra \(a_j = B(c^2 )\) of 2 × 2 complex matrices. These are all independent observables, so the total system is described by \(A = \mathop \otimes \limits_{j\varepsilon Z^v } a_j ,\)a C* -algebra whose hermitian elements are called the quasi-local observables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. F. Streater, The Heisenberg Ferromagnet as a Quantum Field Theory, Commun. Math. Phys. 6 (1967), 233.

    Article  MathSciNet  ADS  Google Scholar 

  2. R. F. Streater, Lectures at Karpacz Winter School (1968)

    Google Scholar 

  3. published by Institute of Theoretical Physics, Wroclaw, 1968.

    Google Scholar 

  4. R. F. Streater, Spontaneous Breakdown of Symmetry in Axiomatic Theory, Proc. Roy. Soc. A287 (1965), 510.

    MathSciNet  ADS  Google Scholar 

  5. F. J. Dyson, General Theory of Spin-Wave Interactions Phys. Rev. 102 (1956), 5.

    Article  ADS  Google Scholar 

  6. G. J. Watts, Theory of Spin-Wave Scattering, Ph.D. Thesis, Mathematics, Bedford College London, 1973.

    Google Scholar 

  7. K. Hepp, Scattering Theory in the Heisenberg Ferromagnet, Phys. Rev B, 5, (1972) 95.

    Article  ADS  Google Scholar 

  8. Z. Takeda, Tohuku Math, J. 6, (1954), 212.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. R. Klauder, J. McKenna and E. J. Woods, J. Mathematical Phys. 7, (1966) 5.

    Article  MathSciNet  Google Scholar 

  10. J. von Neumann, Infinite Tensor Products Compositio Mathematica 6, (1938) 1.

    ADS  MATH  Google Scholar 

  11. R. Haag and D. Kastler, An Algebraic Approach to Quantum Field Theory, J. Mathematical Phys., 5, (1964) 848.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. G. W. Mackey, Induced Representations of Groups and Quantum Mechanics, Benjamin N. Y. (1968).

    Google Scholar 

  13. T. Kato, Perturbation Theory for Linear Operators, Springer, 1966.

    Google Scholar 

  14. J. M. Jauch, Helv. Phys, Acta, 31, (1958) 136.

    Google Scholar 

  15. L. D. Faddeev, Mathematical Aspects of the Three Body Problem in Quantum Scattering Theory; Israel Programme for Scientific Translations, 1965.

    Google Scholar 

  16. J. W. Milnor, Morse Theory, Princeton U. Press. J. Eels, Singularities of Smooth Maps, Nelson.

    Google Scholar 

  17. J. Manuceau and J. C. Trottin, Ann. Inst. Henri Poincaré, Vol. X4 (1969).

    Google Scholar 

  18. D. W. Robinson, Commun. Math. Phys. 7, (1968), 337

    Article  ADS  MATH  Google Scholar 

  19. D. Ruelle, Statistical Mechanics, Benjamin, N.Y. 1969.

    Google Scholar 

  20. R. F. Streater and I. F. Wilde, Time Evolution of Quantum Fields with Bounded Quasi-local Interaction Density, Commun. Math. Phys. 17, (1970) 21.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 D. Reidel Publishing Company, Dordrecht-Holland

About this paper

Cite this paper

Streater, R.F. (1974). Spin-Wave Scattering. In: Lavita, J.A., Marchand, JP. (eds) Scattering Theory in Mathematical Physics. NATO Advanced Study Institutes Series, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-2147-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-2147-0_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-2149-4

  • Online ISBN: 978-94-010-2147-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics