Advertisement

PSA 1972 pp 285-303 | Cite as

On the Usefulness of Modal Logic in Axiomatizations of Physics

  • Aldo Bressan
Chapter
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 20)

Abstract

Natural sciences such as geology, geography, and astronomy are mainly interested in describing features of the real world. Other sciences such as physics and chemistry deal with certain classes of possible phenomena, no matter whether they really taken place or not. The former sciences are based on the latter, so that all are interested in possible phenomena or worlds.

Keywords

Modal Logic Classical Mechanic Mass Point Inertial Frame Event Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Bressan, A., ‘Metodo di assiomatizzazione in senso stretto della Meccanica classica. Applicazione di esso ad alcuni problemi di assiomatizzazione non ancora completamente risolti’, Rend. Sem. Mat. Univ. di Padova 32 (1962), 55.Google Scholar
  2. [2]
    Bressan, A., ‘Cinematica dei sistemi continui in relatività generale’, Annali di Mat. pura ed appl. Serie IV 62 (1963), 99.CrossRefGoogle Scholar
  3. [3]
    Bressan, A., ‘Termodinamica e magneto-visco-elasticità con deformazioni finite in relatività generale’, Rend. Sem. Mat. Univ. di Padova 34 (1964), 1.Google Scholar
  4. [4]
    Bressan, A., ‘Una teoria di relatività generale includente, oltre all’elletromagnetismo e alla termodinamica, le equazioni costitutive dei materiali ereditari. Sistemazione assiomatica’, Rend. Sem. Mat. Univ. di Padova 34 (1964), 74.Google Scholar
  5. [5]
    Bressan, A., ‘Elasticità con elettro-magneto-strizione’, Annali di Mat. pura e appl. (IV) 74 (1966), 383–399.CrossRefGoogle Scholar
  6. [6]
    Bressan, A., ‘Elasticità relativistica con coppie di contatto’, Ricerche di Mat.> 15 (1966), 69.Google Scholar
  7. [7]
    Bressan, A., ‘Ancora sul teorema di Poynting e sul tensore energetico del campo elettromagnetico’, Rend. Acad. Naz. Lincei (VIII) 42 (1967), 491.Google Scholar
  8. [8]
    Bressan, A., ‘On Relativistic Thermodynamics’, Nuovo Cimento, Suppl. (X) 48 (1967), 201.CrossRefGoogle Scholar
  9. [9]
    Bressan, A., ‘Intensional Descriptions and Relative Completeness in the General Interpreted Modal Calculus MC’, in Logic, Language and Probability (ed. by R. J. Bogdan and I. Niiniluoto), D. Reidel Publ. Co., Dordrecht-Holland, 1973.Google Scholar
  10. [10]
    Bressan, A., A General Interpreted Modal Calculus, Yale Press, New Haven, London, 1972.Google Scholar
  11. [11]
    Bressan, A., ‘The Type-Free Interpreted Modal Calculus MC v’, being printed in Rend. Sem. Mat. Univ. Padova.Google Scholar
  12. [12]
    Bressan, A., Relativistic Theories of Materials, Springer, forthcoming.Google Scholar
  13. [13]
    Burks, A. W., ‘The Logic of Causal Propositions’, Mind 60(1961), 363.Google Scholar
  14. [14]
    Carnap, R., Introduction to Symbolic Logic and Its Applications, Dover Publ., New York, 1958.Google Scholar
  15. [15]
    Carnap, R., Meaning and Necessity, The Univ. Chicago Press, 1956.Google Scholar
  16. [16]
    Carnap, R., ‘Replies and Systematic Expositions’ in Paul A. Schilpp (ed.), The Philosophy of R. Carnap (Library of Living Philosophers), Tudor Publishing Co., New York, 1963, pp. 859–999.Google Scholar
  17. [17]
    Fock, V. A., The Theory of Space, Time, and Gravitation (2nd ed., transi, by N. Kemmer), Pergamon Press, 1964.Google Scholar
  18. [18]
    Hermes, H., ‘Eine Axiomatiserung der Allgemeinen Mechanik’, Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, Vol. 3 (Heft 3), Verlag von Hirzel in Leipzig (1938).Google Scholar
  19. [19]
    Hermes, H., ‘Zur Axiomatisierung der Mechanik’, Proceeding of the International Symposium on the Axiomatic Method held at Berkeley, 1957–58, North-Holland Publishing Co., Amsterdam, 1959, p. 250.Google Scholar
  20. [20]
    Hermes, H., ‘Modal Operators in an Axiomatisation of Mechanics’, Proceeding of the Colloque International sur la méthode axiomatique classique et moderne, Paris, 1959.Google Scholar
  21. [21]
    Hughes, G. E. and Cresswell, M. J., An Introduction to Modal Logic, Methuen and Co., London, 1968.Google Scholar
  22. [22]
    McKinsey, J. C. C., Sugar, A. C, and Suppes, P., ‘Axiomatic Foundations of Classical Particle Mechanics’, Journal of Rational Mech. and Analysis 2 (1953), Section 2.Google Scholar
  23. [23]
    Meredith, C. A. and Prior, A. N., ‘Investigation into Implicational S’, Zeitschr. f. Math. Logik und Grundlagen d. Math.> 10 (1964), 203.CrossRefGoogle Scholar
  24. [24]
    Painlevé, P., Les axiomes de la mechanique, Gauthiér-Villars, Paris, 1922.Google Scholar
  25. [25]
    Rosser, J. B., ‘Review of H. Hermes’, J.S.L.> 3 (1938), 119–120.Google Scholar
  26. [26]
    Scott, Dana, ‘Advice on Modal Logic’, in Philosophical Problems in Logic (ed. By K. Lambert), Humanities Press, 1969.Google Scholar
  27. [27]
    Signorini, A., Meccanica razionale, Vol. II, Chapter X, Perella, Roma, 1954, p. 1 (second ed.).Google Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht-Holland 1974

Authors and Affiliations

  • Aldo Bressan
    • 1
  1. 1.Università di PadovaItaly

Personalised recommendations