Skip to main content

Rhythmical Characteristics at Different Levels of CAM Regulation: Physiological and Adaptive Significance

  • Conference paper
Environmental and Biological Control of Photosynthesis

Abstract

Overt circadian rhythms typical of CAM operations in Kalanchoe blossfeldiana (rhythms in CO2 exchanges and in malate content) are shown to be in good correlation to rhythms of enzyme capacity (viz. PEP carboxylase) as a function of photoperiodic conditions. The photoperiod-enzyme relationships differ in long days and in short days showing that a central timing mechanism is involved: in physiological long days (i.e. long days or short days + red light flash interruption of the night) the peak of PEP carboxylase capacity is fixed in time of the day; in short days the rhythm of enzyme capacity shifts according to complex transients and shows only relative coordination to the day-night rhythm. The hypothesis that sensitivity of the plant to light-dark signals changes progressively under short days but not under long days is presented and discussed in terms of adaptive significance. Labelling experiments suggest the operation of a regulatory mechanism combining enzyme circadian rhythmicity and feed-back by malate. Experimental and theoretical implications of these findings are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Becker, T. (1953): Wuchstoff-und Säuerschwankungen bei Kalanchoe blossfeldiana, in verschiedenen Licht-Dunkelwechseln. Planta (Bert.), 43: 1–24.

    Article  CAS  Google Scholar 

  • Borthwick, H.A. & S.B. Hendricks (1960): Photoperiodism in plants. Science, 133: 1223–1228.

    Article  Google Scholar 

  • Brulfert, J., D. Guerrier & O. Queiroz (in preparation)

    Google Scholar 

  • Bünning, E. & W. Engelmann (1960): Endogen-tagesperiodische Schwankungen der photo-periodischen Hellrot-Empfindlichkeit bei Kalanchoe blossfeldiana. Naturwiss., 47: 332.

    Article  Google Scholar 

  • Bünsow, R. (1953): Endogene Tagesrhythmik und Photoperiodismus bei Kalanchoe blossfeldiana. Planta (Bert.), 42: 220–252.

    Article  Google Scholar 

  • Carr, D.J. (1952): A critical experiment of Bünning’s theory of photoperiodism. Z. f. Naturf, 7b: 570–571.

    Google Scholar 

  • Civen, M., R. Ulrich, B.M. Trimmer & C.B. Brown (1967): Circadian rhythms of liver enzymes and their relationship to enzyme induction. Science, 157: 1563–1564.

    Article  PubMed  CAS  Google Scholar 

  • Ehrenberg, M. (1954): Einfluss verschiedenen Licht-Dunkelwechsels auf die Rythmik des Phosphatasenaktivität in den Blättern von Kalanchoe blossfeldiana. Planta (Bert.), 43: 528–536.

    Article  Google Scholar 

  • Engelmann, W. (1960): Endogene Rhythmik und photoperiodische Blühinduktion bei Kalanchoe. Planta (Bert.), 55: 496–511.

    Article  Google Scholar 

  • Jones, M.B. & T.A. Mansfield (1972): A circadian rhythm in the level of carbon dioxide compensation in Bryophyllum fedtschenskoi with zero values during the transient. Planta (Bert.), 103: 134–146.

    Article  CAS  Google Scholar 

  • Kluge, M. & Reinnger, B. (1973): Untersuchungen über den Efflux von Malat aus den Vacuolen der assimilierenden Zellen von Bryophyllum und mögliche Einflüsse dieses Vorganges auf den CAM. Planta (Bert.)., 113:333–343.

    Article  CAS  Google Scholar 

  • Morel, C, C. Celati & O. Queiroz (1972): Sur le métabolisme acide des Crassulacées. V. Adaptation de la capacité enzymatique aux changements de photopériode (métabolisme de l’acide malique et transaminations). Physiol. vég., 10: 743–763.

    CAS  Google Scholar 

  • Mukerji, S.K. (1968): Four hour variations in the activity of malate dehydrogenase ‘decarboxylating’ and phosphoenolpyruvate carboxylase in the cactus (Nopalea dejecta) plant bud. Ind. J. Biochem., 5: 62–64.

    CAS  Google Scholar 

  • Pittendrigh, C.S. (1965): On the mechanism of the entrainment of a circadian rhythm by light cycles. In Aschoff, J. (Ed.): Circadian clocks. Pp. 276–297. North Holland, Amsterdam.

    Google Scholar 

  • Pittendrigh, C.S. (1973): Circadian oscillations in cells and the circadian organisation of multicellular systems. In Schmitt, F.O. (Ed.): The neurosciences: Third Study Program.MIT Press.

    Google Scholar 

  • Queiroz, O (1965): Sur le metabolisme acide des Crassulacées. I. Action à long terme de la température de nuit sur la synthèse d’acide malique par Kalanchoe blossfeldiana „Tom Thumb” placée en jours courts. Physiol. vég., 3: 203–213.

    CAS  Google Scholar 

  • Queiroz, O. (1966): Sur le métabolisme acide des Crassulacées. II: Action à long terme de la température de jour sur les variations de teneur en acide malique en jours courts. Physiol. vèg., 4: 323–339.

    CAS  Google Scholar 

  • Queiroz, O. (1968): Sur le métabolisme acide des Crassulacées. III. Variations d’activité enzymatique sous l’action du photopériodisme et du thermopériodisme. Physiol. vég., 6: 117–136.

    CAS  Google Scholar 

  • Queiroz, O. (1970): Sur le métabolisme acide des Crassulacées. IV. Réflexions sur les phénomènes oscillatoires au niveau enzymatique et sur la compartimentation métabolique sous l’action du photopériodisme. Physiol. vég., 8: 75–110.

    CAS  Google Scholar 

  • Queiroz, O (1974): Circadian rhythms and metabolic patterns. Annu. Rev. Plant Physiol., 24: 115–134.

    Article  Google Scholar 

  • Queiroz, O., C. Celati & C. Morel (1972): Sur le métabolisme acide des Crassulacées. VI. Photopériodisme et rythmes circadiens d’activité enzymatique. Systèmes régulateurs. Physiol. vég., 10: 765–781.

    CAS  Google Scholar 

  • Queiroz, O. & C. Morel (1974): Photoperiodism and enzyme activity. Towards a model for the control of circadian metabolic rhythms in the Crassulacean acid metabolism. Plant Physiol., 53:596–602.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, J. (1951): Über Beziehungen Zwischen Blütenbildung in Verschiedenen Licht-Dunkelkombinationen und Atmungsrythmik bei Wechselnden photoperiodischen Bedingungen. Planta (Berl.), 39: 271–308.

    Article  CAS  Google Scholar 

  • Schwabe, W.W. (1952): Effects of photoperiodic treatment on stomatal movements. Nature, 169: 1053–1055.

    Article  PubMed  CAS  Google Scholar 

  • Schwabe, W.W. (1955): Photoperiodic cycles of lengths differing from 24 hours in relation to endogenous rhythms. Physiol. Plantarum, 8: 263–278.

    Article  Google Scholar 

  • Vanden Driessche, T., (1966): The role of the nucleus in the circadian rhythm of Acetabularia mediterranea. Biochim. Biophys. Acta., 126: 456–470.

    Article  Google Scholar 

  • Vanden Driessche, T. (1970): Circadian variation in ATP content in the chloroplasts of Acetabularia medeterranea. Biochim. Biophys. Acta., 205: 526–528.

    Article  Google Scholar 

  • Vanden Driessche, T. & S. Bonotto (1969): The circadian rhythm in RNA synthesis in Acetabularia mediterranea. Biochim. Biophys. Acta., 179: 58–66.

    PubMed  CAS  Google Scholar 

  • Walther, W.G. & L.N. Edmunds, Jr. (1973): Studies on the control of the rhythm of photo-synthetic capacity in synchronized cultures of Euglena gracilis (Z.). Plant Physiol., 51: 250–258.

    Article  PubMed  CAS  Google Scholar 

  • Wilkins, M.B. (1959): An endogenous rhythm in the rate of CO2 output of Bryophyllum. I. Some preliminary experiments. J. expt. Bot., 10: 337–390.

    Article  Google Scholar 

  • Wilkins, M.B. (1960): An endogenous rhythm in the rate of CO2 output of Bryophyllum. II. The effects of light and darkness on the phase and period of the rhythm. J. exp. Bot., 11: 269–288.

    Article  CAS  Google Scholar 

  • Wilkins, M.B. (1965): The influence of temperature and temperature changes on biological clocks. In Aschoff J. (Ed): Circadian clocks, Pp 146–163. North Holland, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Dr. W. Junk b.v., Publishers, The Hague

About this paper

Cite this paper

Queiroz, O. (1975). Rhythmical Characteristics at Different Levels of CAM Regulation: Physiological and Adaptive Significance. In: Marcelle, R. (eds) Environmental and Biological Control of Photosynthesis. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1957-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1957-6_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-6193-179-9

  • Online ISBN: 978-94-010-1957-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics