Skip to main content

Magnetospheric Convection Induced by Interplanetary Magnetic-Field Variations

  • Conference paper

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 57))

Abstract

The dependence of the polar-cap magnetic disturbance on the polarity and magnitude of the Z-component of the interplanetary magnetic field is investigated by regression analysis using hourly values. The Svalgaard-Mansurov effect has been eliminated assuming a linear dependence on the Y-component of the interplanetary field. It is shown that as the northward component of the interplanetary magnetic field increases, a characteristic current system appears in the polar cap. This current system is composed of two current vortices in the dayside polar cap, one in the pre-noon sector and the other in the afternoon sector. The current direction is antisunward in the central polar cap, suggesting that the sunward plasma convection is induced in the polar cap. Current intensity is strongest at ø M ~ 84° around the noon meridian.

We propose that the tail field lines are reconnected with the northward interplanetary field on the polar side of the dayside polar cusp, and as a result plasma convection is induced which is closed within the high-latitude magnetosphere. On the other hand, when the interplanetary magnetic field is directed southward, a transpolar current sheet appears covering the whole polar cap (ø M ⩾ 77.5°). The characteristics of this transpolar current sheet are as follows: (i) On the dayside, especially around noon, the direction of the current is roughly consistent with the Hall current direction expected from the dawn-to-dusk electric field, while at night it is considerably skewed from the noon-midnight meridian. Skewing of the current direction can be explained by the effect of the currents external to the ionosphere. (ii) Strength of the current is almost linearly dependent on B z when the interplanetary magnetic field is directed southward (θ < −45°). However, the current intensity is also a function of the magnitude of B y , this being apparent when B z ~ 0. This indicates that the dayside reconnection rate is a function of |B y | as well as of B z , and information is derived about the applicability of the three-dimensional reconnection model in the presence of finite |B y |.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akasofu, S.-I., E.W. Hones, Jr., S.J. Bame, J.R. Asbridge & A.T.Y. Lui, Magnetotail and boundary layer plasmas at a geocentric distance of ~ 18 Re: Vela 5 and 6 observations, J Geophys. Res. 78, 7257 (1973a).

    Article  ADS  Google Scholar 

  • Akasofu, S.-I., P.D. Perreault, F. Yasuhara & C.-I. Meng, Auroral substorms and the interplanetary magnetic field, J. Geophys. Res. 78, 7490 (1973b).

    Article  ADS  Google Scholar 

  • Arnoldy, R.L., Signature in the interplanetary medium for substorms, J. Geophys. Res. 76, 5189 (1971).

    Article  ADS  Google Scholar 

  • Atkinson, G., The current system of geomagnetic bays, J. Geophys. Res. 72, 6063 (1967).

    Article  ADS  Google Scholar 

  • Aubry, M.P., C.T. Russell & M.G. Kivelson, On inward motion of the magnetopause before a substorm,J. Geophys. Res. 75, 7018 (1970).

    Article  ADS  Google Scholar 

  • Burch, J.L., Preconditions for the triggering of polar magnetic substorms by storm sudden commencements, J Geophys. Res. 77, 5629 (1972a).

    Article  ADS  Google Scholar 

  • Burch, J.L., Precipitation of low-energy electrons at high latitudes: Effects of interplanetary magnetic field and dipole tilt angle,J. Geophys. Res. 77, 6696 (1972b).

    Article  ADS  Google Scholar 

  • Burch, J.L., Rate of erosion of dayside magnetic flux based on a quantitative study of the dependence of polar cusp latitude on the interplanetary magnetic field, Radio Science 8, 955 (1973).

    Article  ADS  Google Scholar 

  • Burch, J.L., Observation of interactions between interplanetary and geomagnetic fields, Rev. Geophys. Space Phys. 12, 363 (1974).

    Article  ADS  Google Scholar 

  • Dungey, J.W., Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett. 6, 47 (1961).

    Article  ADS  Google Scholar 

  • Dungey, J.W., The structure of the exosphere or adventures in velocity space, in Geophysics (Eds. C. DeWitt, J. Hieblot and A. Lebeau ), p. 503, Gordon and Breach, Science Publ., New York, 1963.

    Google Scholar 

  • Fairfield, D.H. & L.J. Cahill, Jr., Transition region magnetic field and polar magnetic disturbances, J Geophys. Res. 71, 155 (1966).

    ADS  Google Scholar 

  • Fennell, J.F., Access of solar protons to the earth’s polar caps, J. Geophys. Res. 78, 1036 (1973).

    Article  ADS  Google Scholar 

  • Foster, J.C., D.H. Fairfield, K.W. Ogilvie & T.J. Rosenberg, Relationship of interplanetary parameters and occurrence of magnetospheric substorms, J. Geophys. Res. 76, 6971 (1971).

    Article  ADS  Google Scholar 

  • Friis-Christensen, E., K. Lassen, J. Wilhjelm, J.M. Wilcox, W. Gonzalez, & D.S. Col- burn, Critical component of the interplanetary magnetic field responsible for large geomagnetic effects in the polar cap, J Geophys. Res. 77, 3371 (1972).

    Article  ADS  Google Scholar 

  • Friis-Christensen, E. & J. Wilhjelm, Polar cap currents for different directions of the interplanetary magnetic field in the Y-Z plane, J. Geophys. Res. 80, 1248 (1975).

    Article  ADS  Google Scholar 

  • Fukushima, N., Equivalence in ground geomagnetic effect of Chapman-Vestine’s and Birkeland-Alfven’s electric current-systems for polar magnetic storms, Rep. Ionos. Space Res. Japan 23, 219 (1969).

    Google Scholar 

  • Gonzalez, W.D. & F.S. Mozer, A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field, J. Geophys. Res. 79, 4186 (1974).

    Article  ADS  Google Scholar 

  • Hakura, Y., Tables and maps of geomagnetic coordinates corrected by the higher order spherical harmonic terms, Rep. Ionos. Space Res. Japan 19, 121 (1965).

    Google Scholar 

  • Heppner, J.P., Electric fields in the magnetosphere, in Critical Problems of Magneto- spheric Physics (Ed. E.R. Dyer ), p. 107, IUCSTP Secretariat, c/o National Academy of Sciences, Washington DC, 1972a.

    Google Scholar 

  • Heppner, J.P., Polar cap electric field distributions related to the interplanetary magnetic field direction, J. Geophys. Res. 77, 4877 (1972b)

    Article  ADS  Google Scholar 

  • Heppner, J.P., J.D. Stolarik & E.M. Wescott, Electric-field measurements and the identification of currents causing magnetic disturbances in the polar cap, J Geophys. Res. 76, 6028 (1971)

    Article  ADS  Google Scholar 

  • Iwasaki, N., Localized abnormal geomagnetic disturbance near the geomagnetic pole and simultaneous ionospheric variation, Rep. Ionos. Space Res. Japan 25, 163 (1971).

    Google Scholar 

  • Iwasaki, N., Relation between the interplanetary magnetic field and reverse magnetic disturbances in the polar cap, Proc. 52nd Meeting of the Society of Terrestrial Magnetism and Electricity of Japan, p. 138, 1972 (in Japanese).

    Google Scholar 

  • Kamide, Y. & S.-I. Akasofu, Latitudinal cross section of the auroral electrojet and its relation to the interplanetary magnetic field polarity, J. Geophys. Res. 79, 3755 (1974).

    Article  ADS  Google Scholar 

  • Kawasaki, K. & S.-I. Akasofu, Polar solar daily geomagnetic variations on exceptionally quiet days, J Geophys. Res. 72, 5363 (1967).

    Article  ADS  Google Scholar 

  • Kawasaki, K., F. Yasuhara & S.-I. Akasofu, Short-period interplanetary and polar magnetic field variations, Planet, Space Sci. 21, 1743 (1973).

    Article  ADS  Google Scholar 

  • Kakubun, S., Polar substorm and interplanetary magnetic field, Planet. Space Sci. 19, 697 (1971).

    Article  ADS  Google Scholar 

  • Lyatsky, W.B., Yu.P. Maltsev & S.V. Leontyev, Three-dimensional current system in different phases of a substorm, Planet. Space Sci. 22, 1231 (1974).

    Article  ADS  Google Scholar 

  • Maezawa, K., Dependence of the magnetopause position on the southward interplanetary magnetic field, Planet. Space Sci. 22, 1443 (1974).

    Article  ADS  Google Scholar 

  • Mansurov, S.M., New evidence of a relationship between magnetic fields in space and on earth, Geomag. Aeron. (Engl. Transl.) 9, 622 (1969).

    ADS  Google Scholar 

  • McPherron, R.L., C.T. Russell & M.P. Aubry, Satellite studies of magnetospheric substorms on August 15, 1968, 9, Phenomenological model for substorms, J Geophys. Res. 78, 3131 (1973).

    ADS  Google Scholar 

  • Montbrian, L.E., A simple method for calculating the local time of corrected geomagnetic midnight,J. Geophys. Res. 75, 5634 (1970).

    Article  ADS  Google Scholar 

  • Morfill, G. & M. Scholer, Reconnection of the geomagnetic tail deduced from solar- particle observations, J Geophys. Res. 77, 4021 (1972).

    Article  ADS  Google Scholar 

  • Morfill, G. & M. Scholer, Study of the magnetosphere using energetic solar particles, Space Sci. Rev. 15, 267 (1973).

    Article  ADS  Google Scholar 

  • Mozer, F.S., F. Bogott, M.C. Kelley & S. Schutz, Polar cap electric fields and magnetospheric convection, Space Sciences Laboratory, Series 13, Issue 96, Univ. of California, 1973.

    Google Scholar 

  • Murayama, T. & K. Hakamada, Effects of solar wind parameters on the development of magnetospheric substorms, Planet. Space Sci. 23, 75 (1975).

    Article  ADS  Google Scholar 

  • Nishida, A., Geomagnetic Dp 2 fluctuations and associated magnetospheric phenomena,J Geophys. Res. 73, 1795 (1968a)

    Article  ADS  Google Scholar 

  • Nishida, A., Coherence of geomagnetic DP 2 fluctuations with interplanetary magnetic variations,J. Geophys. Res. 73, 5549 (1968b).

    Article  ADS  Google Scholar 

  • Nishida, A. & K. Maezawa, Two basic modes of interaction between the solar wind and the magnetosphereJ. Geophys. Res. 76, 2254 (1971).

    Article  ADS  Google Scholar 

  • Nishida, A. & T. Obayashi, Magnetospheric convection, in Critical Problems of Magnetospheric Physics (Ed. E.R.Dyer ), p. 179, IUCSTP Secretariat, c/o National Academy of Sciences, Washington DC, 1972.

    Google Scholar 

  • Petschek, H.E., Magnetic field annihilation, in AAS-NASA Symposium on the Physics of Solar Flares (Ed. W.H. Hess), NASA SP-50, p. 425, 1964.

    Google Scholar 

  • Russell, C.T., The configuration of the magnetosphere, in Critical Problems of Magnetospheric Physics.(Ed. E.R. Dyer), p. 1, IUCSTP Secretariat, c/o National Academy of Sciences, Washington DC, 1972.

    Google Scholar 

  • Sonnerup, B.U.Ö., Magnetopause reconnection rate, J. Geophys. Res. 79, 1546 (1974).

    Article  ADS  Google Scholar 

  • Svalgaard, L., Sector structure of the interplanetary magnetic field and daily variation of geomagnetic field at high latitudes, Geophys. Paper R-6, Dan. Meteorol. Inst., Copenhagen, Denmark, 1968.

    Google Scholar 

  • Svalgaard, L., Polar cap magnetic variations and their relationship with the interplanetary magnetic sector structure, J. Geophys. Res. 78, 2064 (1973).

    Article  ADS  Google Scholar 

  • Vasyliunas, V.M., Mathematical models of magnetospheric convection and its coupling to the ionosphere, in Particles and Fields in the Magnetosphere (Ed. B.M. McCormac ), p. 60, Reidel, Dordrecht, Holland, 1970.

    Google Scholar 

  • Walters, G.K., Effect of oblique interplanetary magnetic field on shape and behavior of the magnetosphereJ Geophys. Res. 69, 1769 (1964).

    Article  ADS  Google Scholar 

  • Willis, D.M., The influx of charged particles at the magnetic cusps on the boundary of the magnetosphere, Planet. Space Sci. 17, 339 (1969).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

Maezawa, K. (1976). Magnetospheric Convection Induced by Interplanetary Magnetic-Field Variations. In: Knott, K., Battrick, B. (eds) The Scientific Satellite Programme during the International Magnetospheric Study. Astrophysics and Space Science Library, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1892-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1892-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-1894-4

  • Online ISBN: 978-94-010-1892-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics