Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 17))

Summary

The bivariate Burr distribution,

$${\text{F(x,y)}}\,{\text{ = }}\,{\text{1}}\, - \,{(1 + {{\text{x}}^{^{_{{{^{\text{b}}}_1}}}}})^{ - {\text{p}}}}\, - \,{(1 + {{\text{y}}^{^{_{^{\text{b}}2}}}})^{ - {\text{p}}}}\, + \,{(1 + {{\text{x}}^{^{_{{{^{\text{b}}}_1}}}}} + {{\text{y}}^{^{_{^{\text{b}}2}}}} + {\text{r}}{{\text{x}}^{^{_{{{^{\text{b}}}_1}}}}}{{\text{y}}^{^{_{^{\text{b}}2}}}})^{ - {\text{p}}}};\,{\text{x,}}\,{\text{y}}\,\underline \geqslant \,0,\,0\,\underline \leqslant \,{\text{r}}\,\underline \leqslant \,{\text{p}}\, + \,1;\,{\text{F(x,y)}}\,{\text{ = }}\,{\text{0}}\,{\text{elsewhere}}$$

is developed and investigated. Two special cases of the distribution occur when the parameter r = 0 and 1 respectively. For the limiting case r = 0, F(x,y) reduces to the bivariate case of the multivariate Burr distribution developed by Takahasi (1965). When r = 1, F(x,y) = F(x)·F(y), the independent case. The relationship of the bivariate Burr distribution and its marginals to the Pearson curves is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bryson, M. C. (1974). Technometrics 16, 61–68.

    Article  MathSciNet  MATH  Google Scholar 

  2. Burr, I. W. (1942). Ann. of Math. Statist. 13, 215–232.

    Article  MathSciNet  MATH  Google Scholar 

  3. Burr, I. W. (1967a). Industrial Quality Control 23, 563–569.

    Google Scholar 

  4. Burr, I. W. (1967b). Technometrics 9, 647–651.

    Article  MathSciNet  Google Scholar 

  5. Burr, I. W. (1973). Comm. Statist. 2., 1–21.

    Google Scholar 

  6. Burr, I. W. and Cisiak, P. J. (1968). J. Amer. Statist. Assoc. 63, 627–643.

    Article  MathSciNet  Google Scholar 

  7. Craig, C. C. (1936). Ann. Math. Statist. 7, 16–28.

    Article  MATH  Google Scholar 

  8. Durling, F. C. (1969). Bivariate Probit, Logit and Burrit Analysis. Themis Signal Analysis Statistics Research Pro-gram, Tech. Rept. 41

    Google Scholar 

  9. Durling, F. C., Owen, D. B., and Drane, J. W. (1970). Ann. Math. Statist. 41, 1135.

    Google Scholar 

  10. Gradshteyn, I. S. and Ryshik, I. M. (1965). Table of Integrals, Series and Products. Academic Press, New York and London.

    Google Scholar 

  11. Hatke, Sister M. A. (1949). Ann. Math. Statist. 20, 461–463.

    Article  MathSciNet  MATH  Google Scholar 

  12. Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics: Continuous Multivariate Distributions. John Wiley and Sons, Inc., New York and London.

    MATH  Google Scholar 

  13. Pearson, E. S. and Hartley, H. O. (1966). Biometrika Tables for Statisticians, Vol. I, 3rd ed. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  14. Seibert, G. B., Jr. (1970). Estimation and Confidence Intervals for Quantal Response or Sensitivity Data. Themis Signal Analysis Statistics Research Program, Tech. Rept. 66, Department of Statistics, Southern Methodist University, Dallas.

    Google Scholar 

  15. Takahasi, K . (1965). Ann. Inst. Statist. Math. (Tokyo) 17, 257–260.

    Article  MathSciNet  MATH  Google Scholar 

  16. Wheeler, D. J. (1970). An Alternative to an F-Test on Variances. Themis Signal Analysis Statistics Research Program, Tech. Rept. 76, Department of Statistics, Southern Methodist University, Dallas

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 D. Reidel Publishing Company, Dordrecht-Holland

About this paper

Cite this paper

Durling, F.C. (1975). The Bivariate Burr Distribution. In: Patil, G.P., Kotz, S., Ord, J.K. (eds) A Modern Course on Statistical Distributions in Scientific Work. NATO Advanced Study Institutes Series, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1842-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1842-5_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-1844-9

  • Online ISBN: 978-94-010-1842-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics